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Motivation

Quantum field theories are extensively used in particle physics,
condensed matter physics, statistical mechanics...
−→ 3 + 1 dim. continuum theories
−→ thermal field theories
−→ dimensionally reduced effective models

Central objects that one is looking for:
〈φ1φ2...φn〉 correlation functions

Most successful method: perturbation theory
−→ Taylor-expansion based on some small parameters
−→ asymptotic series, does not necessarily show any
aaaaconvergence

Non-perturbative methods are necessary!
−→ Functional Renormalization Group (FRG)
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Wilsonian and Functional Renormalization

At the critical point in 2nd order phase transitions: massless
modes invalidate PT (IR singularities)

Idea of the Wilsonian Renormalization Group:
−→ momentum-shell integration: introduce an
aaaaintermediate scale k and define
aaaaφ(~p) = φ<(~p)Θ(k − |~p|) + φ>(~p)Θ(|~p| − k)

Z =

∫
Dφe−S[φ] =

∫
Dφ<

∫
Dφ>e−S<−S>−Smix [φ<,φ>]

φ> integral is performed using pert. theory

Z =

∫
Dφ<e−S[φ<]

S → S − log <e−[S>]−Smix [φ<,φ>]>

Result: Λ→ k , m2
Λ → m2

k , gΛ → gk + new vertices
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Wilsonian and Functional Renormalization

Rescaling dimensionful quantities with k
−→ flow equations for individual coupling constants:

k∂km̄
2
k = βm(m̄2

k , ḡ
(i)
k , ...) k∂k ḡ

(i)
k = βg (i)(m̄2

k , ḡ
(i)
k , ...)

Fixed points: statistically self-similar behavior
→ no relevant length scale! (2nd order phase transitions)

Identification of relevant and irrelevant directions
→ close to a fixed point only the relevant ones matter
→ finite T transition: one relevant direction

The WRG has had great success in
−→ describing universality in 2nd order transitions
−→ predicting critical exponents
−→ understanding the concept of effective theories
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Wilsonian and Functional Renormalization

FRG generalizes the idea of the WRG: fluctuations are taken
into account at the level of the quantum effective action

Z [J] =

∫
Dφe−(S[φ]+

∫
Jφ) ⇒ Γ[φ̄] = − logZ [J]−

∫
Jφ̄

Introduction of a flow parameter k and inclusion of
fluctuations for which q & k

aa Zk [J] =
∫
Dφe−(S[φ]+

∫
Jφ)

aaaaaaaa×e−
1
2

∫
φRkφ

−→ regulator: mom. dep. mass
aaaaterm suppressing low modes
−→ not only sharp cutoff!
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Wilsonian and Functional Renormalization

Scale-dependent effective action:

Γk [φ̄] = − logZk [J]−
∫

Jφ̄− 1

2

∫
φ̄Rk φ̄

−→ k ≈ Λ: no fluctuations ⇒ Γk=Λ[φ̄] = S[φ̄]
−→ k = 0: all fluctuations ⇒ Γk=0[φ̄] = Γ[φ̄]

The scale-dependent effective
action interpolates between
classical- and quantum
effective actions

The trajectory depends on Rk

but the endpoint does not
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Wilsonian and Functional Renormalization

Flow of the effective action is described by the Wetterich
equation:

∂kΓk =
1

2

∫
qp

Tr [(Γ
(2)
k + Rk)−1(p, q)∂kRk(−q,−p)] =

1

2

Slightly different form: [∂̃k acts only on Rk ]

∂kΓk =
1

2

∫
∂̃k Tr log[Γ

(2)
k + Rk ] =

1

2
∂̃k
∑

Scale dependence of the proper vertices are described by
one-loop diagrams [propagators are dressed!]

−→ exact equation!

Advantage: flows are directly accessible in any dimension
aaaaaaaaaaabut approximation is needed
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Field theoretical RG vs. the FRG

How is the Wilsonian (and Functional) RG related to the field
theoretical RG?

Considering the Euclidean φ4 theory in 4d:

Γ(2)(0) = m2 + δm2 −�+ ... = m2 +
λ

2

∫
q

1

~q 2 + m2
+ ...

Γ(4)(0) = λ+ δλ−�+ ... = λ− 3λ2

2

∫
q

1

(~q 2 + m2)2
+ ...

Minimal substracion:

δm2(µ) = −λ
2

∫
q

(
1

~q 2 + µ2
+

µ2 −m2

(~q 2 + µ2)2

)
δλ(µ) =

3λ2

2

∫
q

1

(~q 2 + µ2)2
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Field theoretical RG vs. the FRG

Finite 2 and 4-point functions:

Γ(2)(0) = m2
µ +

λ

2

∫
q

(
1

~q 2 + m2
µ

− 1

~q 2 + µ2
−

µ2 −m2
µ

(~q 2 + µ2)2

)
+ ...

Γ(4)(0) = λµ −
3λ2

2

∫
q

(
1

(~q 2 + m2
µ)2
− 1

(~q 2 + µ2)2

)
+ ...

Integrand of the fluctuation contributions cuts off at q ∼ µ
−→ m2

µ and λµ plays the role of m2
k and λk !

−→ Why? ⇒ m2
k and λk refer to an effective action where

aaaaaaaaaaaa fluctuations are included where q & k

Renormalization scale µ in the field theoretial RG
aaaaaaaaaaaaaaaaa≡
Separation scale k in the Wilsonian (Functional) RG
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Field theoretical RG vs. the FRG

Two approaches to obtain the β functions:

−→ βm2 : k∂km
2
k or µ∂µm

2
µ

−→ βλ: k∂kλk or µ∂µλµ

Field theoretical RG:

µ∂µm
2
µ = −λµ

2
(µ2 −m2

µ), µ∂µλµ =
3λ2

µ

2

Wilsonian (Functional) RG:

k∂km
2
k = −λk

2

k4

k2 + m2
k

, k∂kλk =
3λ2

k

2

k4

(k2 + m2
k)2

Two results agree but only close to the Gaussian fixed point!
−→ Wilsonian (Functional) RG is more general!
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Field theoretical RG vs. the FRG

Why do we use the field theoretical RG after all?
−→ it does not necessarily introduce a momentum cutoff

aaaa(dim. reg., Pauli-Villars, etc.)

aaaa=⇒ gauge symmetry survives

−→ QCD in the UV and QED in the IR works fine
aaaa(small couplings)

Wilsonian (Functional) RG by definition contains a
momentum cutoff

−→ several generalizations in the market

−→ construction of a gauge invariant RG flow equation

−→ typically very complicated, hard to use them for practical
computations that go beyond usual perturbative treatments

Goal here: practical computations
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Gergely Fejős Functional renormalization group and its applications...



Gauge symmetry violation in the FRG

Abelian gauge (Ai ) theory, N scalar fields (φa)
(Di = ∂i − ieAi , Fij = ∂iAj − ∂jAi)

S =

∫ [1

4
FijFij + (Diφ

a)†Diφ
a + m2φ†aφa +

λ

6
(φ†aφa)2

]
+ Sgf

Gauge symmetry:

δφa(x) = ieΘ(x)φa(x), δAi (x) = −∂iΘ(x)

Quantum theory: gauge symmetry is encoded in the
Ward-Takahashi identities [ΦT = (Ai , φ

†a, φa)]

δZ [J] = 0 ⇒
∫
x
〈δΦα(x)〉 δΓ[Φ̄]

δΦ̄α(x)
− 〈δS〉 = 0

Covariant gauge fixing: δS = i
ξ

∫
p Θ(−p)p2piAi (p)

→ project the master eq. onto different operators: WTIs
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Gauge symmetry violation in the FRG

Projecting onto ∼ Āi : WTI of the AiAj vertex

piΓij(p) = −1

ξ
p2pj ⇒ Γij(p) = (−δijp2 + pipj)(1− Π(p))− 1

ξ
pipj

−→ only the transverse part receives quantum corrections

Pr. onto ∼ φ†aφb: WTI between φ†aφb and Aiφ
†aφb vertices

e
(
Γab(q + p)− Γab(q)

)
= piΓ

i
ab(p, q)

−→ scalar and charge rescaling factors agree: Zφ = Ze

Projecting onto ∼ Āi1Āi2 ...Āin−1 : WTI of the n-point A vertex

piΓi ,i1,i2,...,in−1(p, q1, q2, ...) = 0
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Gauge symmetry violation in the FRG

In the FRG formalism the WTIs change:

S −→ S +
1

2

∫∫
ΦTRkΦ, Γ −→ Γk +

1

2

∫∫
Φ̄TRkΦ̄

The modified Ward-Takahashi identities (mWTI) are
generated via∫

x
〈δΦα(x)〉 δΓ[Φ̄]

δΦ̄α(x)
− 〈δS〉 = 〈δ

∫∫
1

2
ΦTRkΦ〉

−
∫
〈δΦα〉 δ

δΦ̄α

∫∫
1

2
Φ̄TRkΦ̄

The gauge field does not contribute to the rhs:∫
x
〈δΦα(x)〉 δΓk [Φ̄]

δΦ̄α(x)
− 〈δS〉 = ie

∫
p

Θ(−p)

∫
q
〈φ†a(q)φa(q + p)〉c

× [Rk(p + q)− Rk(q)]
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Applications: Abelian gauge theory

LPA ansatz for the effective action with optimal regulator:
[Rk(q) = (k2 − q2)Θ(k2 − q2)]

Γk =

∫ [
ZA,k

2
Ai [−∂2δij + ∂i∂j(1− ξ−1

k )]Aj +
1

2
m2

A,kAiAi

+Zφ,k∂iφ
†a∂iφ

a + iZe,keAi (φ
†
a∂iφa − ∂iφ†aφa)

+
Z 2
e,k

Zφ,k
e2AiAiφ

†
aφa +

Zφ,km
2
k

2
φ†aφa +

Z 2
φ,kλk

6
(φ†aφa)2

]
Proposal: try to maintain all WTIs related to the ansatz
(1) Ze,k = Zφ,k (2) transverse corrections to the gauge prop.

The ∼ φ†aφb projection leads to

Ze,k

Zφ,k
= 1 + 2e2

kξk

∫
q

Rk(q)

(q2 + Rk(q))2

−→ choose the Landau gauge (ξ = 0)!
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Applications: Abelian gauge theory

The ∼ Ai projection leads to two conditions [O(p0), O(p2)]

m2
A,k = − −4Ne2

d(d + 2)
Ωdk

d−2,
ZA,k

ξk
− 1

ξΛ
= Ωde

2 4kd−4

d(d + 2)

−→ photon mass is irrelevant (m2
A,k → 0, if k → 0)

−→ plugging in the flow of ZA,k one gets ξk ≡ 2/(d − 4) 6= 0!
−→ Landau gauge cannot be chosen!

Exactly the same can be obtained from the flow equation:

k∂kΓij(p) =

∫
k ∂̃k

[
pp

q

i j

i j
p p

p + q

q

]
−→ photon mass flows but dies out in the IR
−→ flow of the longitudinal propagator is nonzero
aaaa⇒ it can be compensated with the above choice of ξk
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Applications: Abelian gauge theory

What to do with the discrepancy of ξ?
−→ in d = 4 there is no problem (pert. results are recovered)

k∂kλk =
54e4

k − 18e2
kλk + (N + 4)λ2

k

24π2
, k∂ke

2
k =

Ne4
k

24π2

In d 6= 4 one way is to enforce Zφ,k = Ze,k by hand
and choose ξ = 2/(4− d) at the same time
−→ ξ enters the β functions!

Example of superconductivity: Abelian Higgs model with
N = 1 complex scalar
−→ perturbative results do not allow for an IR fixed point,
aaaabut it does exist (predictions of Monte-Carlo simulations)
−→ the above method does produce an IR fixed point1

1GF & T. Hatsuda, Phys. Rev. D93, 121701 (2016)
aaaaGF & T. Hatsuda, Phys. Rev. D96, 056018 (2017)
aaaaGF & T. Hatsuda, Phys. Rev. D100, 036007 (2019)
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Applications: Abelian gauge theory
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Applications: Abelian gauge theory

Can we save the transversality of the gauge propagator?

k∂kΓij(p) = k ∂̃k

[
pp

q

i j

i j
p p

p + q

q

]∣∣∣
O(p2)

= −e2

∫
q
k∂k

(p + 2q)i
q2 + Rk(q)

(p + 2q)j
(q + p)2 + Rk(q + p)

∣∣∣∣
O(p2)

∼ p2δij −
(

1− 4− d

2

)
pipj

We may try to regulate the vertex momenta!

→ ~qRαk = ~q + α(k~̂q − ~q)Θ(k2 − q2)

k∂kΓij(p) = −e2

∫
q
k∂k

(p + q)i ,Rαk + qi ,Rαk
q2 + Rk(q)

(p + q)j ,Rαk + qj ,Rαk
(q + p)2 + Rk(q + p)

∣∣∣∣
O(p2)

∼ p2δij − pipj

if α2 = 2(2− d)!
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Applications: Abelian gauge theory

Is it justified to regulate the vertex momenta? → yes!

Momentum dependence of the vertex comes from the
derivative coupling: [φa = (sa + iπa)/

√
2]

e

∫
x
Ai (s

a∂iπ
a − πa∂i sa)

→ ie

∫
Ai (q1)sa(q2)πa(q3)(q3 − q2)iδ(q1 + q2 + q3)

The pp

q

i j

i j
p p

p + q

q diagrams are generated when
Ai is set to a background field:

→ ie

∫
sa(q2)πa(q3)(q3i − q2i )Āi (−q2 − q3)

A non-diagonal, background dependent regulator is needed!

→ ie

∫
sa(q2)πa(q3)(q3i ,Rαk

− q2i ,Rαk
)Āi (−q2 − q3)
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Applications: non-Abelian gauge theory

Gauge symmetry: [Non-Abelian Higgs model, φ has flavor and color]

δφγ(x) = igΘaT̂ aφγ(x), δAa
i (x) = −∂iΘa(x) + gf abcAb

i Θc

LPA ansatz for the effective action:

Γk =

∫
x

[
ZA,k

2
Aa
i δ

ab
(
− ∂2δij + (1− ξ−1

k )∂i∂j

)
Ab
j

+Zc,k c̄
a(−∂2δac − Zg ,kZ

1/2
A,k gf

abc∂iA
b
i )cc

−Zφ,kφ†nγ ∂2φnγ +
Zφ,km

2
k

2
φ†nγ φ

n
γ +

Z 2
φ,kλk

6
(φ†nγ φ

n
γ)2

+iZg ,kZ
1/2
A,k Zφ,kgA

a
i

(
∂iφ
†
γ(T̂ aφγ)− (T̂ aφγ)†∂iφγ

)
+Z 2

g ,kZA,kZφ,kg
2f abe f cdeAa

i A
b
i (T̂ cφγ)†(T̂ dφγ)

+Zg ,kZ
3/2
A,k gf

abc∂iA
a
j A

b
i A

c
j

+Z 2
g ,kZ

2
A,k

g2

4
f abe f cdeAa

i A
b
j A

c
i A

d
j

]
Gergely Fejős Functional renormalization group and its applications...



Applications: non-Abelian gauge theory

Generalized WTIs: (Slavnov-Taylor identities)
−→ formally same as the Abelian but much more complicated∫

x
〈δΦα(x)〉 δΓ[Φ̄]

δΦ̄α(x)
− 〈δS〉 = 0

Examples:
−→ Zφ2A − Zφ and Zφ2A2 − Zφ are matter independent
aaaa(but not zero!)
−→ identical definitions of β function of the gauge coupling

− gµ∂µ(δZφ2A − δZφ − δZA/2)

− gµ∂µ(δZφ2A2 − δZφ − δZA)/2

− gµ∂µ(δZ3g − 3δZA/2)

− gµ∂µ(δZ4g/2− δZA)

− gµ∂µ(δAc̄c − δZc − δZA/2)

These are all broken due to the regulator!
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Applications: non-Abelian gauge theory

Suggestion: to keep Γk gauge invariant, deal with all the
Slavnov-Taylor identities relevant in the ansatz of Γk !

Flow of gauge coupling: e.g. use the definition via the
gauge-ghost-ghost vertex (does not include matter!)

Formally:

β(g) → gkk∂k logZg ,k

=
gk
Zg ,k

k∂k

(
Zg ,kZ

1/2
A,k Zc,k

Z
1/2
A,k Zc,k

)
=

gk

Zg ,kZ
1/2
A,k Zc,k

k∂k(Zg ,kZ
1/2
A,k Zc,k)

− gk
Zc,k

k∂kZc,k −
gk

2ZA,k
k∂kZA,k

Use diagrammatics to calculate the red terms!
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Applications: non-Abelian gauge theory

The following diagrams need to be calculated:3

pigf
abck∂k(Zg ,kZ

1/2
A,k Zc,k) = k ∂̃k

(
�

+

�

)

p2δabk∂kZc,k = k ∂̃k

(
�

)

k∂k

[
ZA,k

(
p2δij − pipj(1− ξ−1

k )
)]
δab = k ∂̃k

(
�

+ +
�

+

�

+

�

)

3GF & N. Yamamoto, JHEP 12 (2019) 069
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Applications: non-Abelian gauge theory

Once again gauge choice is in general not arbitrary!

∂k

[
ZA,k

(
p2δij − pipj(1− ξ−1

k )
)]

= (...)
[
p2δij − pipj f (d)

]
For d = 4 the flow is transverse and we get

βg |d=4 = −
g3
k

(4π)2

(11

3
Nc −

Nf

6

)

For d = 3 the flow is not transverse → two roots for ξ!

ξ± = 1 +
Nf

4
± 1

4

√
N2
f − 8Nf + 456

Requirement: since at large Nf gauge fields are suppressed,
there should be an IR fixed point → rules out ξ+
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Applications: non-Abelian gauge theory

The β-function in d = 3:

β(g)|d=3 = −gk −
g3
k

2π2

[(
19

9
+

16

45
ξ−

)
Nc −

2Nf

15

]

ξ− = 1 +
Nf

4
− 1

4

√
N2
f − 8Nf + 456

Application: color superconductivity (Nc = 3, Nf = 3)

−→ β(g) < 0 for all g > 0

−→ no IR fixed point, regardless of the scalar potential!

−→ color superconducting phase transition is of 1st order

Can the flow of the gluon propagator be transverse?
Appropriate vertex regularization?
=⇒ future work!
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Summary

Functional Renormalization Group (FRG) method:
−→ generalization of the Wilsonian RG to the effective action
−→ regulator: explicit momentum cutoff (separation scale)
−→ gauge symmetry gets explicitly violated

In a quantum gauge theory symmetry is encoded in the
Ward-Takahashi identities
−→ all WTIs are violated via the regulator

Proposal:
1.) build up an ansatz for the effective action
2.) identify all relevant WTIs
3.) find appropriate gauge choice(s) and/or regulator
aaa functions that recover them

Local Potential Approx. + Abelian gauge theories → OK

Local Potential Approx. + non-Abelian gauge theories
−→ transversality of the gluon propagator?
−→ equivalence of choices for the flowing gauge coupling?
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