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Abstract

e We discuss some aspects of Gradient Flow Exact
Renormalization Group, a new frame work to define the
Wilsonian effective action via the gradient flow

e We study the fixed point structure of GFERG flow
associated with a general polynomial gradient flow
equation for scalar field theories

 Wle also investigate the RG flow of O(3) non-Ilinear
sigma model with the Wess-Zumino term by GFERG, as a
loophole of the above discussion
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Review of
Gradient Flow Exact
Renormal ization Group



Exact Renormalization Group (ERG)

e A framework to study physics under varying the energy
scale

e The Wilson action S, is intuitively defined by
integrating out higher momentum modes of the fields:

—Sr .— -S
e = ]D¢p>Ae 0

(A :=Aye™%, Ay cutoff)

« t—dependence of the Wilson action S; is described by
a differential equation = “ERG equation”
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Wilson-Polchinski equation

« A typical example of the ERG equation:

D+2—17, 9 5S,
aTST — f{[(ZPZ + 5 1 ) + Pu E‘ d)i(p) 5¢i(p)

’ +(2 2+1_’71)< i - SHTC >}
o 2 )\60;()6¢p:(=p)  6¢;(p) 5¢;(—p)
000 00

e This equation defines a renormalization procedure
non—-perturbatively

(n,: anomalous dimension) [J.Polchinski Muc/.Phys.B 231 (1984) 269-295]

(We work on the dimensionless framework and D-dimensional Euclidean space)
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Gauge invariance in ERG

e The Wilson action with the naive UV cutoff is
inconsistent with gauge invariance

e The gauge transformation mixes higher and lower
momentum modes:

A8 (p) > A%(p) — pre®(p) — if E f 0P (p — A Q)
q

e Can we define a Wilson action in a manifestly
gauge invariant manner?
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Renormalization and Diffusion

e The solution to the WP equation can be written
in the following form:

eStlfl = 51 JDCP' 1_[ §(¢;(x) — e™P=2/271/2p1(t, xe™)) §¢resf=0[¢’]
X,

A 62 . &€ ”»
(84 = exp (—%fx qui(x)z) : “scrambler”)

¢ is a solution to the diffusion equation:

0:'(t,x) = 079 (t,x), ¢'(0,x) = ¢'(x)
where t:=e?T —1
e This representation implies that the coarse—graining
by the diffusion can be used to define an RG flow
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Gradient Flow (GF)

e This one—-parameter deformation of fields via
the diffusion equation has been studied
in the context of “gradient flow”

e The gradient flow is a method to construct composite
operators without the equal-point singularity

e Correlation functions are UV finite with wave
function renormalization:

-Mn/2
Z7" (8, x) @ (8, %2) -+ @t %))y < 00
even for the equal point case (e.g. x; = x,)
[F.Capponi,L.Debbio,S.Ehret,R.Pellegrini,A.Rago 1512.02851]
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Gradient Flow ERG (GFERG)

e GF equation for gauge fields [M. Liischer,P.Weisz 1101.0963]

d:B,, = D),Gy, + ayD;0,B,

with B, (0,x) = A4, (x)

« S. for gauge fields can be defined via the GF equation
[H. Sonoda and H. Suzuki 2012.03568]

e~Stl4f] .= ;1 j[DA’ﬁ] 1_[ ) (Af}(x) — eT(D‘Z)/ZBp’La(t,x’eT)) § e~ Se=0l Al
x!,a,u
52

A _1 .« ” -
(8, = exp[ zfxaAﬁ(x)aAﬁ(x)]' scrambler” for gauge fields)

e GFERG defines an RG flow in a gauge-invariance way!
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Fixed Point Structure of

GFERG for

Scalar Field Theories

Based on arXiv:2201.04111, PTEP 2022, No.3, 033B03
(2022) with Y.Abe (Wisconsin), Y.Hamada (KEK)



Our motivation

e The appropriate gradient flow eq. highly depends on
details of the theory, such as its symmetry and
interactions

e The GFERG flow depends on the form of the GF eq.,
and then becomes different for each theory

e This means that the GFERG eq. for general scalar
field theories is no longer given by the WP eq.

e Is GFERG consistent with the conventional ERG?
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Our motivation

« The gradient flow equation for the O(N) non-linear
sigma model

0.; = 029; — (9;020;)p;

[H.Makino, H.Suzuki 1410.7538]

e But this model and the linear sigma model in three
dimension belong to the same universality class

« “Does GFERG give the same prediction as the
conventional ERG for the IR behavior of a theory?”

e These facts strongly motivate us to study
the fixed points and the critical exponents in GFERG
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Our work

e We study the fixed points of the general GFERG eq.
for scalar fields
—> The fixed points of the WP eq. appear
in the T > o limit along the GFERG flow

* We show the GFERG eq. has a similar RG flow structure
around a fixed point
—> Scaling dimensions of relevant or marginal
operators are the same, while those of irrelevant
operators can be different

* GFERG gives the same prediction as the conventional
ERG for the IR behavior of a theory
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General gradient flow equation

 General form of gradient flow equations

T(pl - a)%gol + z f ll ln(‘x; X1y v X1 aX1' O aXn)cpil (T, xl) (pin(T' xn)

xl xn \

N=Nmin Y

WP part extra fterms

« Counterpart of WP eq. in GFERG (GFERG eq.)
aTe—Sr[q’] = (WP part)

_ 0 igyoin 0
+ z A 1(T)—];c,x1 IIIII xn5¢i(x){]§ (¢i1(x1)+5¢i1(x1)>><

o
- = T[ ]
X <¢Ln(xn) + 5¢in(xn)>}e Stl®
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Fixed point

e The fixed-point action S* is defined as
0,5 =0 and S* = lim S,
T—00

e §* satisfies

" 8 ( pisvin 5
V=P ), 2 1(°°)L,x1,.._,xn6¢i(x>{’3 <¢i1(x1)+6¢i1(x1>>x"'

o)
) —S*[P]
X <¢Ln(xn) + 6¢in(xn)>}e SP

e Asymptotic behavior of A(7)
d

A(t) ~exp(—t(D —2+1n)/2) g:: —logZ,

* A(o0) should vanish from the cluster decomposition
principle at S*
=S* satisfies the fixed-point condition of the WP eq.

T=00
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RG flow around fixed point

e Let us study the t-dependence of S, affter a long time
T =1, > 1 so that A(7y) ~ e ToD=24M)/2 « 1

e Consider perfurbating S. from a fixed point §*
at T =1y OS

Sp, = S* + z §ch0,
A

|6c4] « 1

O4: 0 complete set of operators
(defined in the next slide) Sz, =S* +8c40,
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Solution in the T = 00 limit

 We have two small quantities: §c4, Ay = e To(P=2+m)/2

e Solution to the GFERG eq. up to the leading order

S, =S5"+ z (5CAexAT’ _ }{gmin_l(e_(nmin_l)(D_Z'H])T,/Z _ exAr')hA) 0,
A

where 1 =175+ 1 0,

04: eigenoperators of the linearized WP eq.
around S*
x,: eigenvalue of 04
Npin: Minimum order of the non-linear terms
in the GF eq.

h4: some constant
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Scaling dimension

(relevant)

e*aT or
« Scaling Dimension dj, o~ (Mmin-1(D+2-1)/2 7'

dy = max(xg, —(ny — DD — 2 +n)/2)

(irrelevant)

x4 = 0 (relevant or marignal) = dy = x4

x4 < 0 (irrelevant) = dy = —min(|xy|,(n,, — 1D —2+1n)/2)

 d, of relevant or marginal operators are x,
= critical exponents are the same as those of
the WP eq.
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GFERG analysis of

0(3) non-linear sigma model
in two dimensions

Based on a preliminary work with Hiroshi Suzuki
(Kyushu)



Our Motivation

 0(3) non-linear sigma model is a loophole of the
previous study

e This model is gapless with the Wess-Zumino term with
8 =m — non-trivial fixed point

e Its gradient flow equation

0.p; = 02¢; — (0029, );

[H.Makino, H.Suzuki 1410.7538]

e It is interesting to study its RG flow by GFERG
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Wilson action

e le want to treat bare fields rather than renormalized
ones

1
e We should rescale ¢;(x) = A(t) 2¢;(x) in the definition
of the Wilsonian effective action of GFERG:

19 = 51y [ D97 [ [60i0) - pie xem) s oSl
X
where ¢; is the solution to the GF equation:

0r@; = 07p; — (9j02¢}) 9]
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Constraint along RG flow

e Constraint of the fields of O(N) NL sigma model
¢f =1

« S_ preserves it in the sense of the (modified)
correlation functions:

L (¢ =Dy, by, »s5,= 0
where < O[¢] >g = qubl (§/1(r)-1/2¢0[¢]) e Stld]
(ReCGI | eST[ — §/1(T) 1/2 4, JDd) 1_[5(¢ (x) — (pl(t X@T))S yeSt=0 (¢ ])

e GFERG can define an RG flow which preserves the
information of the ftarget space
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GFREG equation

e GFERG equation
d.e> = (WP part) +

)(qsi(x)u(r)z 2 )eSr
5¢;(x)

2 j 2 (qb,-(x)u(r)z >62<¢j<x)+1(r)2

o)
6¢i(x) 5¢j(x) 5¢j(x)

* We assume A(x) takes a finite non-zero value g
* Fixed point condition

0 = (WP part) +

)
+2j (gbj(x) + g°

)62<¢-(x)+92 ° ><¢-(x)+92 ° )es*
5¢;(x) ! 6¢;(x) l §¢pi(x)
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fewepaaufl')i(x)avfﬁj(x) apa')i(x)agflv)j(x)
X

2

where @;(p) = ¢i(p)

e We consider only mass and kinetic terms, and these
cubic and quartic interactions
( “truncation method” )

e=2P% 4 p24m?2
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Fixed Point Condition

S

0=—g*m?*+203m?* — 1)
0 =2g°%hc, + 2(m? —4)cy + 12¢; — 10g*hc,

0 =0(m? + g?(6 — 4m?)c,)

h
0= 5(1 +m?)(1 + 5m? + 8g2 (2(m? — 1)cy + ¢1)) + 262(g? — 10g*62c;)

where ¢; (i = 1,2,3) is some constant including m?
e These constants arise from the loop integrals such as

2

CO =
—2p?2 2 2
pe P +pc+m
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Fixed Point

e Unfortunately, the solution to the all fixed point
condition is just the Gaussian one:

g = 6 =h=0

e If we neglect the condition from the mass term, there
is a non-ftrivial fixed point:

m? ~ 282,974 ~929%x1073,h =~ =239 x 10

with 6 =3/4

e We can discuss @ =m can be a fixed point
from the periodicity (8 - 0 + 2m) and CP symmetry
— Qur ansatz may be bad..
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Conclusions and
Future Directions



Conclusion |

e Studied the fixed point structure of the GFERG
equation associated with a general gradient flow
equation for scalar field theories

e Showed that the fixed points are the same as those of
the Wilson-Polchinski equation in general

* Discussed that the GFERG equation has a similar RG
flow structure around a fixed point to the WP
equation

» GFERG gives the same prediction as the conventional
ERG for the IR behavior of a theory
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Conclusion 2

e Studied an RG flow of O(3) non-linear sigma model in
two-dimensions

* Wrote down its GFERG equation, which preserves the
consTroinT<¢f==iL i.e., the information of the target
space

e Discussed that the fixed point and found there is a
non-trivial fixed point if we neglect the condition
for the mass term, as well as the Gaussian one

34/35



Future Direction

e (Non-abelian) gauge theory

e Gravity and asymptotic safety
“Wilson action with manifest diffeomorphism

invariance”

e Scalar field theories with a non-trivial target space

in two dimensions
e.g.) O(N) NL sigma model, CPY~' model

e Effects of topological terms in QFT

Thank you!
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