Permanent Loop Current in Strongly Correlated Electron Systems based on fRG

fRG in condensed matter physics

Rina Tazai (YITP, Kyoto university)

1. Introduction: fRG in condensed matter physics

2. Recent study of "non-local phase transition" based on fRG

ex. permanent loop current

①coupled-chain Hubbrad model ②kagome superconductor (2019~)

RT et al., Phys. Rev. B 103, L161112 (2021). RT *et al.*, Sci. Adv. **8**, eabl4108 (2022).

3. summary

Itineracy and locality of electron

intermediate region of itineracy and locality (U≈t)

- magnetic order
- charge order
- superconductivity

fRG is powerful in intermediate region.

low energy effective interaction

W. Metzner, et al., Rev. Mod. Phys. 84, 299 (2012). T. Enss, PhD thesis (2005). 4

advantage of fRG

diagrammatic calculation with vertex corrections (later)

1. Introduction: fRG in condensed matter physics

2. Recent study of "non-local phase transition" based on fRG

ex. permanent loop current

①coupled-chain Hubbrad model ②kagome superconductor (2019~)

RT et al., Phys. Rev. B 103, L161112 (2021). RT *et al.*, Sci. Adv. **8**, eabl4108 (2022).

3. summary

non-local phase transitions

recent discovery

Based on fRG, "new types of phase transitions" have been discovered! = non-local order

order parameter of non-local order

$$\hat{O} = \sum_{i \neq j} \left| \frac{\delta t_{ij} c_i^{\dagger} c_j}{\delta c_i} \right|$$

= spontaneous symmetry breaking of hopping

local VS non-local order

local order

ex. spin order, charge order

order parameter <S_i>≠0 i: lattice index

$$\hat{O}=\sum_{z}\hat{S}_{z} \ \underline{c}_{i\sigma}^{\dagger} \underline{c}_{i\sigma}^{}$$
 σ : spin

same site

non-local order

ex. loop current order

loop current by Haldane

Haldane's loop current

$$H_{\text{Haldane}} = -t_1 \sum_{\langle ij \rangle} c_i^{\dagger} c_j - t_2 \sum_{\langle \langle i,j \rangle \rangle} e^{i\phi_{ij}} c_i^{\dagger} c_j + e^{-i\phi_{ij}} c_j^{\dagger} c_i$$

effective Aharonov-Bohm (AB) phase in Origin of this imaginary hopping was unknown

Phys. Rev. Lett. 61 2015 (1988)

cf. AB phase in magnetic-field

 \rightarrow Novel Prize in 2016

Hermite system

pure imaginary hopping = effective AB phase

- * time reversal symmetry is broken.
- * odd parity

recent discover: various loop current

open problem

Emergence of loop currents could not be explained by RPA/ mean-field theory.

Can we explain by fRG? = our motivation

classification of non-local order

study of non-local order by fRG

fRG + "optimized non-local form factor"

1. Introduction: fRG in condensed matter physics

2. Recent study of "non-local phase transition" based on fRG

ex. permanent loop current

1 coupled-chain Hubbrad model 2 kagome superconductor (2019~)

RT et al., Phys. Rev. B 103, L161112 (2021). RT *et al.*, Sci. Adv. **8**, eabl4108 (2022).

3. summary

$$\hat{H} = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{i \sigma} \frac{U}{2} c_{i\sigma}^{\dagger} c_{i,\sigma} c_{i,\bar{\sigma}}^{\dagger} c_{i,\bar{\sigma}} c_{i,\bar{\sigma}}$$
interaction

18 RT et al., Phys. Rev. B 103, L161112 (2021)

* Development of loop current fluctuation is absence in RPA

phase diagram by fRG

We discover loop current, which was overlooked for years.

origin of loop current

1. Introduction: fRG in condensed matter physics

2. Recent study of "non-local phase transition" based on fRG

ex. permanent loop current

①coupled-chain Hubbrad model ②kagome superconductor (2019~)

> RT et al., Phys. Rev. B 103, L161112 (2021). RT *et al.*, Sci. Adv. **8**, eabl4108 (2022).

3. summary

New superconductor: AV₃Sb₅ (2019~)

origin of bond order

<u>R. Tazai *et al.*, Sci. Adv. **8**, eabl4108 (2022).</u>

New superconductor: AV₃Sb₅ (2019~)

loop current in kagome metal

loop current in kagome metal

loop current in kagome metal

26 R. Tazai *et al.*, Sci. Adv. **8**, eabl4108 (2022).

We reveal a new origin of "loop current" by Maki-Thompson vertex correction.

Summary

