Incompleteness of the Large N Analysis of the $\mathrm{O}(\mathrm{N})$ Models: Nonperturbative Cuspy Fixed Points and their Nontrivial Homotopy at finite N

Advanced Science Research Center, JAEA,
The Racah Institute of Physics³,
LPTMC, Sorbonne UniversitéC

Shunsuke Yabunaka ${ }^{\text {A }}$, Claude Fleming ${ }^{\text {B }}$, Bertrand Delamotte ${ }^{\text {C }}$
Phys. Rev. Lett. 119, 191602 (2017)
Phys. Rev. Lett. 121, 231601 (2018)
Phys. Rev. D 102, 065008 (2020).
Phys. Rev. E 106, 054105 (2022)

$\mathrm{O}(\mathrm{N})$ models

- They have played an important role in our understanding of second order phase transitions.
- N-component vector order parameter $\mathrm{N}=1 \ldots . \mathrm{I}$ sing, $\mathrm{N}=2 \ldots \mathrm{XY}, \mathrm{N}=3 \ldots$. Heisenberg Model
- The playground of almost all the theoretical approaches... Exact solution (2d Ising), Renormalization group ($\mathrm{d}=4-\varepsilon$, $2+\varepsilon$ expansion), conformal bootstrap

Everything is known about the criticality of $\mathrm{O}(\mathrm{N})$ models?
...This is what we want to challenge in this work.

Common wisdom on the criticality of $\mathrm{O}(\mathrm{N})$ models (finite N case)

GLW Hamiltonian

$$
H[\phi]=\frac{1}{2} \int_{x}\left(\nabla \phi_{i}\right)^{2}+U(\phi)
$$

$$
U(\phi)=a_{2} \phi_{i}^{2}+a_{4}\left(\phi_{i}^{2}\right)^{2}+a_{6}\left(\phi_{i}^{2}\right)^{3}+\ldots
$$

Below the critical dimension $d_{n}=2+2 / n$, the $\left(\phi_{i}^{2}\right)^{n+1}$ term becomes relevant around the Gaussian FP (G).

$$
\text { Finite } N \underset{2}{ } \xrightarrow{H} \begin{array}{c:c:c:c:c}
\frac{\mathrm{WF}+T_{2}}{2} & \frac{8}{3} & \mathrm{~T} & & \\
\hline+T_{3}+\mathrm{G} & \mathrm{WF}+T_{2}+\mathrm{G} & \mathrm{WF}+\mathrm{G} & \mathrm{G} \\
\hline
\end{array}
$$

A nontrivial fixed point T_{n} with n relevant (unstable) directions branches from G at d_{n}. (Wilson-Fisher FP, which describes second order phase transition, at $\mathrm{d}=4$ and the tricritical $\mathrm{FP} T_{2}$ at $\mathrm{d}=3 \ldots$...)

Common wisdom on the criticality of

 $\mathrm{O}(\mathrm{N})$ models at $N=\infty$- At $N=\infty$, in generic dimensions $2<\mathrm{d}<4$, only Gaussian (G) and Wilson-Fisher (WF) FPs have been found.
- Exceptional case: At $d_{n}=2+2 / n$ there exists a line of FPs starting from G. It terminates at BMB (Bardeen-Moshe-Bander) FP for $n=2,4,6, \ldots$, and at WF FP for odd integer $n=3,5,7, \ldots$.
(For the odd integer cases, refer to
J. Comellas and A. Travesset, Nucl. Phys. B 1997,
S. Yabunaka and B. Delamotte Arxiv 2301.01021)
- LPA of NPRG is believed to be exact.

Summary of common wisdom and

a simple paradox

- What occurs if we follow T_{2} from $\left(d=3^{-}, N=1\right)$ to ($d=2.8, N=\infty$) continuously as a function of (d,N)?

Possible scenarios

- T_{2} disappears. (Collision with another FP?)
- T_{2} becomes singular at $N=\infty$.

Possible scenarios

- T_{2} disappears. (Collision with another FP?)
- T2 becomes singular at $\mathrm{N}=\infty$.

We shall see that both possibilities are realized depending on the path followed from $\left(d=3^{-}, N=1\right)$ to $(d=2.8, N=\infty)$, which leads to "nontrivial homopopy" at finite N .

Large-N expansion

- One of the prominent tools in field theory, which has played an important role in QCD as well as in statistical mechanics and condensed matter physics.
- A nonpertubative method can make a bridge between $d=4-\epsilon, 2+\epsilon$ expansions.

Large-N expansion

- In terms of Feynman graphs, 2 and 4-point functions for $\mathrm{O}(\mathrm{N})$ models can be calculated exactly by resumming the bubble and cactus graphs under the assumption $g \sim 1 / N$ at the leading order.
$g \cdots$ coupling constant in front of $\left(\varphi^{2}\right)^{2}$

In this talk, the situation can be more complicated than widely believed even for $\mathrm{O}(\mathrm{N})$ models.

Usual large N limit of the

LPA flow

Rescaled finite N equation $\quad \tilde{U}_{t}=N \bar{U}_{t} \quad \tilde{\phi}=\sqrt{N} \bar{\phi}$

$$
\partial_{t} \bar{U}_{t}(\bar{\phi})=-d \bar{U}_{t}(\bar{\phi})+\frac{1}{2}(d-2) \bar{\phi} \bar{U}_{t}^{\prime}(\bar{\phi})+\left(1-\frac{1}{N}\right) \frac{\bar{\phi}}{\bar{\phi}+\bar{U}_{t}^{\prime}(\bar{\phi})}+\frac{1}{N} \frac{1}{1+\bar{U}_{t}^{\prime \prime}(\bar{\phi})}
$$

- The terms proportional to $1 / \mathrm{N}$ are assumed to be subleading.
- At $N=\infty$, the resulting NPRG eq without an explicit $1 / \mathrm{N}$ dependence was believed to be exact and can be solved exactly.

Usual large N limit of the

LPA flow

$$
\partial_{t} \bar{U}_{t}(\bar{\phi})=-d \bar{U}_{t}(\bar{\phi})+\frac{1}{2}(d-2) \bar{\phi} \bar{U}_{t}^{\prime}(\bar{\phi})+\left(1-\frac{1}{N}\right) \frac{\bar{\phi}}{\bar{\phi}+\bar{U}_{t}^{\prime}(\bar{\phi})}+\frac{1}{N} \frac{1}{1+\bar{U}_{t}^{\prime \prime}(\bar{\phi})}
$$

- The only nontrivial solution is Wilson Fisher FP solution in generic dimensions $2<d<4$.
- In $d_{n}=2+2 / n(n=2,3, \cdots)$, we have a line of multicritical FPs starting from the Gaussian FP
- We show that the procedure described here is too restrictive.

Renormalization group FPs

showing cusps

M. Tissier and G. Tarjus, PRL (2013)

D. Gredat, et al, PRE (2013)

We will show that they also play an important role in simple field theories such as $O(N)$ models.

Non perturbative

renormalization group (NPRG)

- Modern implementation of Wilson's RG that takes the fluctuation into account step by step in lowering the cut-off wavenumber k, in terms of wavenumber-dependent effective action Γ_{k}

NPRG equation

NPRG equation (Wetterich, Phys. Lett. B, 1993) is

$$
\begin{gathered}
\partial_{t} \Gamma_{k}[\boldsymbol{\phi}]=\frac{1}{2} \operatorname{Tr}\left[\partial_{t} R_{k}\left(q^{2}\right)\left(\Gamma_{k}^{(2)}[q,-q ; \boldsymbol{\phi}]+R_{k}(q)\right)^{-1}\right] \\
t=\ln (k / \Lambda)
\end{gathered}
$$

Derivative expansion(DE2)

- It is impossible to solve the NPRG equation exactly and we have recourse to approximations,

$$
\begin{aligned}
\Gamma_{k}[\phi]=\int_{x}(& \frac{1}{2} Z_{k}(\rho)\left(\nabla \phi_{i}\right)^{2}+\frac{1}{4} Y_{k}(\rho)\left(\phi_{i} \nabla \phi_{i}\right)^{2} \\
& \left.+U_{k}(\rho)+O\left(\nabla^{4}\right)\right)
\end{aligned} \quad \rho=\phi_{i} \phi_{i} / 2
$$

- Simpler approximations \cdots LPA $(n=0)$, LPA' approximation

$$
\begin{array}{cc}
Y_{k}(\rho)=0 & Z_{k}(\rho)=\bar{Z}_{k} \\
\downarrow \\
& \eta_{t}=-\partial_{t} \log \bar{Z}_{k}
\end{array}
$$

Applications of DE

PHYSICAL REVIEW E 90, 062105 (2014

Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition
P. Jakubczyk, ${ }^{1}$ N. Dupuis, ${ }^{2}$ and B. Delamotte ${ }^{2}$

Institute of Theoretical P Physics, Faculty of Physics, University of Warsav, Pasteura 5, 02-093 Warsav, Poland
LILberatoirs de Physique Theoriuye de le Matiere Condensee CNRS UMR 7600 . ${ }^{2}$ Laboratoire de Physiquu Theoriquu de la Matière Condensee, CNRS UMR 7600, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 055
(Received 10 September 2014; published 1 December 2014)
We reexamine the two-dimensional linear $\mathrm{O}(2)$ model $\left(\varphi^{4}\right.$ theory in the framework of the nonperturbative We reexamine the two-dimensional linear $\mathrm{O}(2)$ model (φ^{4} theory) in the framework of the nonperturbative
renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared regulator, we find a transition between a high-temperature (disordered) phase and low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreemen
with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the with the standard theory of the Kosterlitr-Thouless $(K T)$ transition and reproduce the universal features of the
transition. In particular, we find the anomalous dimension $\eta\left(T_{\mathrm{kr}}\right) \simeq 0.24$ and the stiffness $\mathbf{u m p} \rho_{\mathrm{t}}\left(T_{\mathrm{k} \tau}\right) \simeq 0.64$ the transition temperature T_{KT}, in very good agreement with the exact results $\eta\left(T_{\mathrm{KT}}\right)=1 / 4$ and $\rho_{\mathrm{s}}\left(T_{\mathrm{KT}}\right)=2 / \pi$ as well as an essential singularity of the correlation length in the high-temperature phase as $T \rightarrow T_{\mathrm{kT}}$

$$
\Delta \Gamma_{k}[\boldsymbol{\phi}]=\frac{1}{2} \rho_{s, k} \int d^{d} r(\boldsymbol{\nabla} \theta)^{2} .
$$

Precision calculation of critical exponents in the $\mathbf{O}(\mathbf{N})$ universality classes

 with the nonperturbative renormalization groupGonzalo De Polsi@, ${ }^{1, *}$ Ivan Balog, ${ }^{2}$ Matthieu Tissiere, ${ }^{3}$ and Nicolás Wschebor ${ }^{4}$
${ }^{1}$ Instituto de Física, Facultad de Ciencias, Universidad de la Repüblica, Iguá 4225, 11400, Montevideo, Uruguay ${ }^{2}$ Institute of Physics, Bijenička cesta 46, HR-10001 Zagreb, Croatia
${ }^{3}$ Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France ${ }^{4}$ Instituto de Física, Facultad de Ingeniería, Universidad de la República, J.H.y Reissig 565, 11000 Montevideo, Uruguay
© (Received 23 January 2020; accepted 26 February 2020; published 14 April 2020)
We compute the critical exponents v, η and ω of $\mathrm{O}(N)$ models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted $\left.O\left(\partial^{4}\right)\right]$. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between $\frac{1}{9}$ and $\frac{1}{4}$, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific hea exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.

	v	η	ω
LPA	0.7090	0	0.672
$O\left(\partial^{2}\right)$	$0.6725(52)$	$0.0410(59)$	$0.798(34)$
$O\left(\partial^{4}\right)$	$0.6716(6)$	$0.0380(13)$	$0.791(8)$
$\mathrm{CB}(2016)$	$0.6719(12)$	$0.0385(7)$	$0.811(19)$
$\mathrm{CB}(2019)$	$0.6718(1)$	$0.03818(4)$	$0.794(8)$
Six-loop, $d=3$	$0.6703(15)$	$0.0354(25)$	$0.789(11)$
ϵ expansion, ϵ^{5}	$0.6680(35)$	$0.0380(50)$	$0.802(18)$
ϵ expansion, ϵ^{6}	$0.6690(10)$	$0.0380(6)$	$0.804(3)$
$\mathrm{MC}+\mathrm{High} T(2006)$	$0.6717(1)$	$0.0381(2)$	$0.785(20)$
$\mathrm{MC}(2019)$	$0.67169(7)$	$0.03810(8)$	$0.789(4)$
Helium-4 (2003)	$0.6709(1)$		
Helium-4 (1984)	$0.6717(4)$		
$X Y-\mathrm{AF}\left(\mathrm{CsMnF}_{3}\right)$	$0.6710(7)$		
$X Y-\mathrm{AF}\left(\mathrm{SmMnO}_{3}\right)$	$0.6710(3)$		
$X Y-\mathrm{F}\left(\mathrm{Gd}_{2} \mathrm{IFe}_{2}\right)$	$0.671(24)$	$0.034(47)$	
$X Y-\mathrm{F}\left(\mathrm{Gd}_{2} \mathrm{ICo}_{2}\right)$	$0.668(24)$	$0.032(47)$	

Scaled NPRG equation

- Fixed point is found by nondimensionalized renormalized field

$$
\tilde{\phi}=\sqrt{Z_{k}} k^{\frac{2-d}{2}} \phi \quad \tilde{\rho}=Z_{k} k^{2-d} \rho \quad \tilde{U}_{t}(\tilde{\rho})=k^{-d} U_{k}(\rho)
$$

Litim cutoff $\quad y=\frac{q^{2}}{k^{2}} \quad R_{k}\left(q^{2}\right)=Z_{k} k^{2} y r(y) \quad r(y)=(1 / y-1) \theta(1-y)$

Under LPA,
$\partial_{t} \tilde{U}_{t}(\tilde{\phi})=-d \tilde{U}_{t}(\tilde{\phi})+\frac{1}{2}(d-2) \tilde{\phi} \tilde{U}_{t}^{\prime}(\tilde{\phi})+(N-1) \frac{\tilde{\phi}}{\tilde{\phi}+\tilde{U}_{t}^{\prime}(\tilde{\phi})}+\frac{1}{1+\tilde{U}_{t}^{\prime \prime}(\tilde{\phi})}$.
Rescaled finite N equation

$$
\tilde{U}_{t}=N \bar{U}_{t} \quad \tilde{\phi}=\sqrt{N} \bar{\phi}
$$

$$
\partial_{t} \bar{U}_{t}(\bar{\phi})=-d \bar{U}_{t}(\bar{\phi})+\frac{1}{2}(d-2) \bar{\phi} \bar{U}_{t}^{\prime}(\bar{\phi})+\left(1-\frac{1}{N}\right) \frac{\bar{\phi}}{\bar{\phi}+\bar{U}_{t}^{\prime}(\bar{\phi})}+\frac{1}{N} \frac{1}{1+\bar{U}_{t}^{\prime \prime}(\bar{\phi})}
$$

Nondimensionalized

NPRG eq.

- Scaling solutions can be found as FPs solution of nondimensionalized NPRG eq.

$$
\tilde{\phi}=\sqrt{Z_{k}} k^{\frac{2-d}{2}} \phi \quad \tilde{\rho}=Z_{k} k^{2-d} \rho \quad \tilde{U}_{t}(\tilde{\rho})=k^{-d} U_{k}(\rho)
$$

Litim cutoff $\quad y=\frac{q^{2}}{k^{2}} \quad R_{k}\left(q^{2}\right)=Z_{k} k^{2} y r(y) \quad r(y)=(1 / y-1) \theta(1-y)$

Under LPA,
$\partial_{t} \tilde{U}_{t}(\tilde{\phi})=-d \tilde{U}_{t}(\tilde{\phi})+\frac{1}{2}(d-2) \tilde{\phi} \tilde{U}_{t}^{\prime}(\tilde{\phi})+(N-1) \frac{\tilde{\phi}}{\tilde{\phi}+\tilde{U}_{t}^{\prime}(\tilde{\phi})}+\frac{1}{1+\tilde{U}_{t}^{\prime \prime}(\tilde{\phi})}$.

Wilson-Polchinski version of NPRG

Transformation of the variables

$$
V(\mu)=U(\phi)+(\phi-\Phi)^{2} / 2
$$

$$
(U, \phi) \longleftrightarrow(V, \Phi)
$$

$$
\phi-\Phi=-2 \Phi V^{\prime}(\mu)
$$

$$
\mu=\Phi^{2}
$$

Rescaling in N

$$
\bar{\mu}=\mu / N, \bar{V}=V / N
$$

LPA FP eq. $\quad 0=1-d \bar{V}+(d-2) \bar{\mu} \bar{V}^{\prime}+4 \bar{\mu} \bar{V}^{\prime 2}-2 \bar{V}^{\prime}-\underline{\frac{4}{N} \bar{\mu} \bar{V}^{\prime \prime} .}$
$1 / N \quad$ A small parameter
$\bar{V}^{\prime \prime} \quad$ The highest order derivative
We have to deal with singular perturbation in general.

Usual large-N limit in the

functional RG

$$
0=1-d \bar{V}+(d-2) \bar{\varrho} \bar{V}^{\prime}+2 \bar{\varrho} \bar{V}^{\prime 2}-\bar{V}^{\prime}-\frac{2}{N} \bar{\varrho} \bar{V}^{\prime \prime}
$$

- In generic dimensions $2<d<4$, it has three solutions: Gaussian FP (G), Wilson Fisher FP (WF) and linear FP $\bar{V}(\bar{\varrho})=\bar{\varrho}$.
- In dimensions $d=2+2 / p$ with odd integer $p>0,\left(\boldsymbol{\varphi}^{2}\right)^{p+1}$ term is marginal around G and a line of FPs starting from G and terminating at BMB FP appears.

Tricritical FP solutions in $d=3$

and at $N=\infty$ in LPA

$$
\bar{\varrho}=\bar{\mu} / 2
$$

$\bar{\varrho}_{ \pm}=1+\frac{\bar{V}^{\prime}\left(\frac{5}{2}-\bar{V}^{\prime}\right)}{\left(1-\bar{V}^{\prime}\right)^{2}}+\frac{\frac{3}{2} \arcsin \sqrt{\bar{V}^{\prime}} \pm \sqrt{2 / \tau}}{\left(\bar{V}^{\prime}\right)^{-1 / 2}\left(1-\bar{V}^{\prime}\right)^{5 / 2}}$
$\bar{\varrho}_{+} \rightarrow \bar{\varrho}>1$
$\bar{\varrho}_{-} \rightarrow \bar{\varrho}<1$
D. F. Litim and M. J. Trott, PRD (2018)

- $\tau=0 \quad \cdots$ Gaussian (G) FP

- $\tau \in\left[0, \tau_{\text {BMB }}=32 /(3 \pi)^{2}\right] \cdots$ FPs on the BMB line
- $\tau>\tau_{\text {BMB }} \cdots$ No FP defined for all ϱ
$\cdot \sqrt{2 / \tau}=0 \cdots$ Wilson-Fisher (WF) FP

A FP with a cusp at $\mathrm{N}=\infty$

$$
d=3.2, N=\infty
$$

Two smooth FP solutions at $\mathrm{N}=\infty$ can be connected with a cusp.

$\mathrm{C}_{2} \mathrm{FP}$ (with 2 relevant directions)

Boundary layer analysis

 (finite N cases)$\tilde{\mu}=N\left(\bar{\mu}-\bar{\mu}_{0}\right) \quad$ Scaled variable around a cusp

- At the leading order in $1 / N$

$$
F(\tilde{\mu})=\bar{V}^{\prime}(\bar{\mu})
$$

$$
0=1-d \bar{V}\left(\bar{\mu}_{0}\right)+(d-2) \bar{\mu}_{0} F+4 \bar{\mu}_{0} F^{2}-2 F-4 \bar{\mu}_{0} F^{\prime}
$$

Primes stand for derivatives with respect to $\tilde{\mu}$

- The boundary layer solution near the cusp is given as

$$
\begin{gathered}
V^{\prime}(\tilde{\mu})=V_{1}-V_{2} \tanh \left(V_{2} \tilde{\mu}\right) \\
V_{1}=1 / 4+\bar{V}^{\prime}\left(\bar{\mu}_{0}^{+}\right) / 2 \quad V_{2}=1 / 4-V^{\prime}\left(\mu_{0}^{+}\right) / 2
\end{gathered}
$$

At finite \mathbf{N}, the boundary layer matches smoothly (but abruptly) the two different slopes V_{1} and V_{2} on the right and left of the cusp.

Correspondence between

 the two parametrization Wilson-Polchinski frameworkWetterich framework

$$
\begin{aligned}
& (U, \phi) \longleftrightarrow(V, \Phi) \\
& V(\mu)=U(\phi)+(\phi-\Phi)^{2} / 2 \\
& \phi-\Phi=-2 \Phi V^{\prime}(\mu)
\end{aligned}
$$

C_{3} (with 3 relevant directions)

- C_{2} is the only singular FP of $O(N)$ models at $N=\infty$??
- We have found that, at $N=\infty, \mathrm{C}_{2}$ and another new FP C3 appear as a pair in $\mathrm{d}=4$.

Wilson-Polchinski framework
$C_{3} d=3.2$

C2 $\quad N=\infty$

Finite-N fixed point

structure

We found two nonperturbative fixed points
C_{2} (two-unstable) and C_{3} (three-unstable), which do not coincide with G at any d .

$$
N=N_{c}(d)
$$

T_{2} and C_{3} collide and vanish

$$
N=N_{c}^{\prime}(d)
$$

C_{2} and C_{3} collide and vanish

The two lines meet at $\mathrm{S}=(\mathrm{d}=2.8, \mathrm{~N}=19)$

The line $N=N_{c}(d)$

- We can fit this line as $N_{c}(d)=3.6 /(3-d)$

Pisarski (1982 PRL) and Osborn-Stergiou (2018 JHEP)
studied ϕ^{6} theory perturbatively (with $\epsilon=3-d$
expansion) and showed that T_{2} can exist for

$$
N \leq N_{c}^{P T}(d)=\frac{36}{\pi^{2}(3-d)} \simeq \frac{3.65}{(3-d)}
$$

which agrees with our numerical fit within numerical uncertainty.

- The perturbative calculation does not describe the nonperturbative FP C_{3} far from the line $N=N_{c}(d)$ very precisely.

The first double-valued

- Starting from P , we follow T_{2} around a path around the point S clockwise. After full rotation it becomes C_{2}.
- Anticlockwise path... T_{2} vanishes at $N=N_{c}(d)$ and it remains complex all along the dashed path. It becomes real at $N=N_{c}^{\prime}(d)$ and comes back as C_{2}.

Two fates of depending on the path followed

The first double-valued

structure

- However complicated it may seem, this structure is one of the simplest ones consistent with the following well known facts:
(1) Pertubative FP T_{2} vanishes above the line $N=N_{c}(d)$ by colliding another FP_{3}
(2) C_{2} and C_{3} do not exist in $d>4$ (Triviality)
(3) We have T_{2} in $d=2$ and $N=1$
(Conformal field theory).

To obtain the complete FP structure, we need to consider the BMB line.

Singular FPs constructed

from the FPs on the BMB line

Finite-N realization of the regular BMB line

- Let us consider to follow T_{2} or C_{3} on a path toward $(d=3, N=\infty): d=3-\alpha / N, N \rightarrow \infty$
- It approaches a FP on the BMB line and τ is given by

$$
\alpha-36 \tau+96 \tau^{2}=0
$$

- Derivation: We expand the potential as

$$
\bar{V}_{\alpha, N}(\bar{\varrho})=\bar{V}_{\alpha, N=\infty}(\bar{\varrho})+\bar{V}_{1, \alpha}(\bar{\varrho}) / N+O\left(1 / N^{2}\right) .
$$

and impose analyticity of $\bar{V}_{1, \alpha}(\bar{\varrho})$ around $\bar{\varrho}=1$

Plot of τ

as a function of α

Under the double limit $d=3-\alpha / N, N \rightarrow \infty$

- This relation between is also valid for the FPs on the singular BMB line.

Fixed point structure in the vicinity of $d=3, N=\infty$

- The number of relevant directions around a FP is indicated with the subscript.

The second double-valued

structure

FIG. 11. Point S^{\prime} and the lines $N_{c, S}(d)\left[\mathrm{A}_{2}=\tilde{\mathrm{A}}_{3}\right]$ (violet diamonds), $N_{c, S^{\prime}}^{\prime}(d)\left[\tilde{\mathrm{A}}_{3}=\mathrm{S} \tilde{\mathrm{A}}_{4}\right]($ green crosses $)$ and $N_{c, S^{\prime}}(d)\left[\mathrm{SA}_{3}=\right.$ $\mathrm{S} \tilde{\mathrm{A}}_{4}$] (orange squares). Starting from P, SA_{3} is followed on a clockwise closed path traveling around S^{\prime}. When $d>3, \mathrm{SA}_{3}$ and SG_{3} are one and the same FP. SA_{3} remains real all along the path but back to the point P , it is $\tilde{\mathrm{A}}_{3}$. Following SA_{3} along a path traveling twice around S^{\prime} it comes back to SA_{3}.

- This structure is consistent with the points (i)-(iii) and what we found for the BMB line near $d=3, N=\infty$.

Summary

- We have solved an old paradox about $O(N)$ models at the price of finding a zoo of new FPs and their homotopy structures.
- New multicritical FPs are found in $d=3$ for $N \gtrsim 28$, whereas the pertubative tricritical FP exists only below $d=3$.
- We generalized BMB phenomenon for finite- N cases, which turned out to be necessary to have a consistent picture.

