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O(N) models

* They have played an important role in our understanding
of second order phase transitions.

* N-component vector order parameter
N=1...Ising, N=2...XY, N=3...Heisenberg Model

 The playground of almost all the theoretical approaches...
Exact solution (2d Ising), Renormalization group (d=4-¢,

2+€ expansion), conformal bootstrap




Common wisdom on the criticality
of O(N) models (finite N case)

GLW Hamiltonian H|¢| = 1 /(V@)Q + U(¢) O

2
, ’er . N-component
U(p) = arpy + a)(d;)” + ag(P7) + . .. order parameter

Below the critical dimension d, =2+ 2/n | the (gbl.z)’””r1 term
becomes relevant around the Gaussian FP (G).
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A nontrivial fixed point 1}, with n relevant (unstable) directions
branches from G at d,. (Wilson-Fisher FP, which describes second
order phase transition, at d=4 and the tricritical FP /5 at d=3....)



Common wisdom on the criticality of
O(N) models at /N = oo

e At V = o0, in generic dimensions 2<d<4, only Gaussian
(G) and Wilson-Fisher (WF) FPs have been found.

* Exceptional case: At d,, = 2 + 2/n there exists a line of
FPs starting from G. It terminates at BMB (Bardeen-

Moshe-Bander) FP for n = 2,4,6,..., and at WF FP for
odd integern = 3,35,7,....

(For the odd integer cases, refer to
J. Comellas and A. Travesset, Nucl. Phys. B 1997,
S. Yabunaka and B. Delamotte Arxiv 2301.01021)

e | PA of NPRG is believed to be exact.



Summary of common wisdom and
a simple paradox

WF+G  WF4G WF+G
+BMB +BMB G

AR

. WF+G | WF+G | WF+G | @

N = o0 Lt . : =
. WF+T5 : :
o L +T3+G ¢ WE+T,NG | WF+G | G
Finite N ; Yo ' ' '

>
3 4 d

|
| oo

- What occurs if we follow T2 from (d=37,N =1)
to (d=28,N =o00) continuously as a function of

(d,N)7




Possible scenarios

. [2 disappears. (Collision with another FP?)

. [2becomes singular at N=w.



Possible scenarios

. T2 disappears. (Collision with another FP?)

. [2becomes singular at N=w.

We shall see that both possibilities are realized
depending on the path followed from (d =37, N =1)
to (d=2.8, N =00) , which leads to “nontrivial
homopopy” at finite N.



L arge-N expansion

. One of the prominent tools in field theory,
which has played an important role in QCD
as well as In statistical mechanics and
condensed matter physics.

. A nonpertubative method can make a
bridge between d =4 — ¢,2 + ¢ expansions.




L arge-N expansion

. In terms of Feynman graphs, 2 and 4-point
functions for O(N) models can be calculated exactly
by resumming the bubble and cactus graphs under
the assumption g ~ 1/N at the leading order.

g ---coupling constant in front of (¢°)’

In this talk, the situation can be more complicated than
widely believed even for O(N) models.




Us

ual large N limit of the
LPA flow

Rescaled finite N equation ﬁt — NU, gg =V N @

0:U(¢) = —dUs(¢) + %(d— 2)6 Ul(¢) + (1 _ i) gE—|—§ 11

. The terms proportional to 1/N are assumed to be
subleading.

. At N=o, the resulting NPRG eqg without an explicit

1/N @
be so

ependence was believed to be exact and can

ved exactly.



Usual large N limit of the
LPA flow

OUU3) = ~dT) + 5(d~26010) + (1-2) 5o+ e

. The only nontrivial solution is Wilson Fisher FP
solution In generic dimensions 2<d<4.

. Indy,=2+2/n(n=2,3,---) we have a line of
multicritical FPs starting from the Gaussian FP

. We show that the procedure described here Is too
restrictive.



Renormalization group FPs
SNOWING CUSPS
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We will show that they also play an important role in simple
field theories such as O(N) models.



Non perturbative
renormalization group (NPRG)

- Modern implementation of Wilson’s RG that takes the

fluctuation into account step by step in lowering the cut-off
wavenumber k, In terms of wavenumber-dependent effective

action 1'g

CoA ﬁpk—A = H Microscopic Hamiltonian

Tieo = < Effective action (Free energy),
»c,  where all the fluctuations are
ooy space taken into account.

C3...Cp,



NPRG equation

NPRG equation (Wetterich, Phys. Lett. B, 1993) is

O[] = 5 TO RGN, ~ 4 6] + Rule)™

t=1In(k/A)



Derivative expansion(DEZ2)

. |t is impossible to solve the NPRG equation exactly and we
have recourse to approximations,

1 1

gl = [ (320(V6) + () 6rv6.)

p=Qip;/2

LU(p) + 0<v4>) |

. Simpler approximations---LPA(n =0), LPA" approximation



Applications of DE
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Reexamination of the nonperturbative renormalization-group approach
to the Kosterlitz-Thouless transition
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We reexamine the two-dimensional linear O(2) model (¢* theory) in the framework of the nonperturbative
renormalization-group. From the flow equations obtained in the derivative expansion to second order and with
optimization of the infrared regulator, we find a transition between a high-temperature (disordered) phase and a
low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement
with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the
transition. In particular, we find the anomalous dimension 7(7kr) >~ 0.24 and the stiffness jump p,(Ty) > 0.64 at
the transition temperature Txr, in very good agreement with the exact results 7(Txr) = 1/4 and p,(Tyy) = 2/,
as well as an essential singularity of the correlation length in the high-temperature phase as T — Tir.

1
ATI$] = S psk / d'r (Vo).

ro — roe = —3.69 X 107
- TO = TU(',
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Precision calculation of critical exponents in the O(N) universality classes
with the nonperturbative renormalization group
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We compute the critical exponents v, n and w of O(N) models for various values of N by implementing the
derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually
denoted O(d*)]. We analyze the behavior of this approximation scheme at successive orders and observe an
apparent convergence with a small parameter, typically between % and %, compatible with previous studies in
the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents
with a precision which is similar or better than those obtained by most field-theoretical techniques. We also
reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case,
where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat
exponent «, our results are compatible with those of Monte Carlo but clearly exclude experimental values.

v n 15}
LPA 0.7090 0 0.672
0(9?) 0.6725(52) 0.0410(59) 0.798(34)
0(8%) 0.6716(6) 0.0380(13) 0.791(8)
CB (2016) 0.6719(12) 0.0385(7) 0.811(19)
CB (2019) 0.6718(1) 0.03818(4) 0.794(8)
Six-loop, d =3 0.6703(15) 0.0354(25) 0.789(11)
€ expansion, €’ 0.6680(35) 0.0380(50) 0.802(18)
€ expansion, €® 0.6690(10) 0.0380(6) 0.804(3)
MC+High T (2006) 0.6717(1) 0.0381(2) 0.785(20)
MC (2019) 0.67169(7) 0.03810(8) 0.789(4)
Helium-4 (2003) 0.6709(1)

Helium-4 (1984) 0.6717(4)

XY-AF (CsMnF3) 0.6710(7)

XY-AF (SmMnO3) 0.6710(3)

XY -F (Gd,IFe,) 0.671(24) 0.034(47)

XY-F (Gd»ICo,) 0.668(24) 0.032(47)




Scaled NPRG equation

. Fixed point is found by nondimensionalized
renormalized field

b = \/kakygb b= Zik* % Ut(p) = kU (p)
2
Litim cutoff y = % Ri(q?) = Zpk*yr(y) r(y) = (1/y — 1)0(1 — y)
Under LPA,
0,0,(3) = ~dTh(d) + Ld- 0@ + (N 1) — L 4 L
tUt t 9 t Q’B—FU{(CB) | 1_|_th//($)
Rescaled finite N equation (th _ NUt é _ \/N gg

O0E) = ~dT3) + 5(d~ 2500 + (1= 3 ) o + 1o



Nondimensionalized
NPRG ea.

. Scaling solutions can be found as FPs solution of
nondimensionalized NPRG ea.

6= \"7Zk 2 ¢ b= Zpk*p U4(5) = k~U(p)
timoutoft 5= L Rule?) = ZuPyry) )= (1y - DA 1)
Under LPA,
517(@)=—dﬁ($)+l(d—Z)qBI?’(&H(N—U ¢ | !
o R t S+ 043 1+07(d)



Wilson-Polchinskl version
of NPRG

Transformation of the variables

(U,¢) «— (V, @)

Rescaling in N = u/N,V=V/N
_ _ _ _ 4
LPAFPeq. 0=1—dV +(d—2)aV' +4pV’'? -2V’ — ~ V.

1/N A small parameter

V"' The highest order derivative

We have to deal with singular perturbation in general.



Usual large-N Iimit in the
functional RG

_ N _ B 2 B
0=1-dV +(d—2)aV" +20V" - V/%V

. In generic dimensions 2 < d < 4, It has three solutions:
Gaussian FP (G), Wilson Fisher FP (WF) and linear FP
V(o) =0 .

. In dimensions d = 2 + 2/p with odd integer p > 0, (p?)?*!

term Is marginal around G and a line of FPs starting
from G and terminating at BMB FP appears.



Tricritical FP solutions In d = 3
and at N= o In LPA

7o WF FP

N — _/2 0.4
- V! (g — V’) % arcsin VV/ £ 1/2/7 03—
o+ =1+ — 2 T — \—1/2 —,\5/2 :
1=V (V) (1-V7) 02 /]« Not analytic
0> 0> 1 here
. D. F. Litim and M. J. Trott, PRD (2018) o4/ / BMB FP
o_ >0 i
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T = 0 ---Gaussian (G) FP 00 © 05 1.0 15 2.0
. 7 € [0,7sm = 32/(37)%] - FPs on the BMB line
T > TBMB ---No FP defined for all ¢

- /2/7 = 0 -*Wilson-Fisher (WF) FP



A FP with a cusp at N=ow

_ d=3.2,N =00

o V() =h/2

- WF FP
L T

Two smooth FP solutions at N=« can be connected
with a cusp.



C2 FP (with 2 relevant
directions)
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Boundary layer analysis
(finite N cases)

ft = N(i— fig)  Scaled variable around a cusp
. At the leading order in 1/N F(fi) = V'(1)

0=1—-dV (o) + (d—2)ioF + 4figF* — 2F — 4fig F’
Primes stand for derivatives with respect to ,[l

. The boundary layer solution near the cusp Is given as
V(1) = Vi — Vatanh(Va 1)
Vi=1/44+V"(a5)/2  Va=1/4=V"(ui)/2

At finite N, the boundary layer matches smoothly
(but abruptly) the two different slopes V; and V5
on the right and left of the cusp.



Correspondence between
the two parametrization

Wilson-Polchinski framework Wetterich framework
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C3 (with 3 relevant
directions)

. C2is the only singular FP of 0(¥) models at N = «0??

. We have found that, at N = v, C2 and another new
FP Cs appear as a pair in d=4.

Wilson-Polchinski framework

C3d=3.2 C2 N=wx
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Finite-N fixed point
Structure

We found two nonperturbative fixed points
Cs (two-unstable) and Cs (three-unstable),
which do not coincide with G at any d.

S N S i it Rl
) ; ) N = N.(d)
. LPA, DE2 .
| ; To and C5 collide and
1000 1_‘2=Cr3 i
i N(d) | vanish
B L N = N)(d)
,;'§QAA ¢ = ¢y N'(d) Cy and Cs collide and
5¢ vanish
10

26 28 3 32 34 36 38 4 The two lines meet

d at S=(d=2.8,N=19)



The line N = Nc(d>

. We can fit this line as N.(d) = 3.6/(3 — d)

Pisarski (1982 PRL) and Osborn-Stergiou (2018 JHEP)
studied ¢ % theory perturbatively (with e =3 — d
expansion) and showed that T, can exist for

30 3.00
N < NFL(d) = ~
SN D=5 T Boa
which agrees with our numerical fit within numerical

uncertainty.

. The perturbative calculation does not describe the
nonperturbative FP C; far from the line N = N.(d) very

precisely.



The first double-valued
structure

40
(a) (b) T3
35t 1 35¢ Co
30 | { 30 <----
N A P ! .
25 | 1 25¢ E : No mult. 1
: ! 1 FPS
20 | ; |20 '
<O Yy \ A
15 L w w w 15 ‘ ‘ I ‘
27 28 29 3 31 32 27 28 29 3 31 32
d d

e Starting from P, we follow 15 around a path around the
point S clockwise. After full rotation it becomes C5 .

* Anticlockwise path... 5 vanishes at N = N_.(d)and it
remains complex all along the dashed path. It becomes
real at v = N/(d) and comes back as (5.

After two full rotations we go back to 715



Two fates of depending on
the path followed
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The first double-valued
structure

. However complicated it may seem, this structure Is one
of the simplest ones consistent with the following well
known facts:

(1) Pertubative FP T2 vanishes above the line N = N.(d) by
colliding another FP Cs

(2) C2 and Cs do not exist in d > 4 (Triviality)

(3) We have T2 iInd=2and N=1

(Conformal field theory).

To obtain the complete FP structure, we need to consider
the BMB line.



Singular FPs constructed
from the FPs on the BMB line
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FIG. 7. d = 3 and N = oo: Construction of the singular counter-
part S A of a regular tricritical FP A of the BMB line. The potential
of A is the solution of Eq. (21) obtained with 7 >~ 0.1776 (shown in
red). The potential of S.A is shown as a solid line made of two parts
that match at oo >~ 0.32. For ¢ > @ it coincides with A(t) and for
8 < o itis V(8) = o,
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Finite-N realization of the
regular BMB line

. Let us consider to follow T2 or C3 on a path
toward (d=3,N=):d=3—a/N,N — o

. It approaches a FP on the BMB line and 7 is given
by a — 367 + 9672 = 0

. Derivation: We expand the potential as

Van(0) = Va,n=oo(0) + V1,4(0)/N + O(1/N?).

and impose analyticity of ¥ ,(z) around ¢ =1



T

Plot of ¢
as a function of «

Under the double limit d =3 — /N, N — oo

0.5, o
In the vicinity of (d, N) = (3, c0)
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. This relation between is also valid for the FPs on the

singular BMB line.



Fixed point structure In the
vicinity of d = 3, N =

- d . G@=C3atN=OOd>3
3. /)‘ 2 a=70
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. The number of relevant directions around a FP is indicated with the subscript.



The second double-valued
structure
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FIG. 11. Point §’ and the lines N, s(d)[A; = A;] (violet di-
amonds), NC/’S/(d)[A3 = SA4](green crosses) and N, g (d)[SA; =

0 SA,] (orange squares). Starting from P, SA; is followed on a clock-
wise closed path traveling around S’. When d > 3, SA; and SGj; are

2.8 3 32 34 3.6 one and the same FP. SA; remains real all along the path but back

d to the point P, it is Az. Following SA; along a path traveling twice

around S’ it comes back to SA;.

. This structure Is consistent with the points (i)-(iii)
and what we found for the BMB line near
d=3,N= .



Summary

. We have solved an old paradox about O(N) models at the

price of finding a zoo of new FPs and their homotopy
structures.

. New multicritical FPs are found in d =3 for N > 28,

whereas the pertubative tricritical FP exists only below
d = 3.

- We generalized BMB phenomenon for finite-N cases,
which turned out to be necessary to have a consistent
picture.



