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O(N) models
• They have played an important role in our understanding 

of second order phase transitions.


• N-component vector order parameter　　　　　　　　　　　
　N=1…Ising, N=2…XY, N=3…Heisenberg Model


• The playground of almost all the theoretical approaches…
Exact solution (2d  Ising), Renormalization group（d=4-ε, 
2+ε expansion), conformal bootstrap

Everything is known about the criticality of O(N) models?                                       
…This is what we want to challenge in this work.



Common wisdom on the criticality 
of O(N) models (finite N case)

A nontrivial fixed point        with n relevant (unstable) directions 
branches from  G at       . (Wilson-Fisher FP, which describes second 
order phase transition, at d=4 and the tricritical FP         at d=3….)

GLW Hamiltonian �i

Below the critical dimension                           , the  term 
becomes relevant around the Gaussian FP (G).
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• At              , in generic dimensions 2<d<4, only Gaussian 
(G) and Wilson-Fisher (WF) FPs have been found.


• Exceptional case: At                        there exists a line of 
FPs starting from G. It terminates at BMB (Bardeen-
Moshe-Bander) FP for , and at WF FP for 
odd integer . 
 
 (For the odd integer cases, refer to  
J. Comellas and A. Travesset, Nucl. Phys. B 1997,  
S. Yabunaka and B. Delamotte Arxiv 2301.01021)  


• LPA of NPRG is believed to be exact.

n = 2,4,6,...
n = 3,5,7,...

Common wisdom on the criticality of　
O(N) models at 　　　　　　　           　　

N = 1

N = 1

dn = 2 + 2/n



• What occurs if we follow T2  from                           
to                           continuously as a function of 
(d,N)?

Summary of common wisdom and                     
a simple paradox

(d = 3�, N = 1)
(d = 2.8, N = 1)



Possible scenarios

• T2  disappears. (Collision with another FP? )　　 

• T2 becomes singular  at N=∞. 

         



Possible scenarios

• T2  disappears. (Collision with another FP? )　　 

• T2 becomes singular at N=∞. 

We shall see that both possibilities are realized 
depending on the path followed from                       
to                          , which leads to “nontrivial 
homopopy” at finite N.                         

(d = 3�, N = 1)

(d = 2.8, N = 1)



Large-N expansion
•One of the prominent tools in field theory, 
which has played an important role in QCD 
as well as in statistical mechanics and 
condensed matter physics. 

•A nonpertubative method can make a 
bridge between  expansions.d = 4 − ϵ, 2 + ϵ



Large-N expansion
• In terms of Feynman graphs, 2 and 4-point 
functions for O(N) models can be calculated exactly 
by resumming the bubble and cactus graphs under 
the assumption               at the leading order. 

In this talk, the situation can be more complicated than 
 widely believed even for O(N) models. 

・・・
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I. INTRODUCTION

The O(N) models are probably the simplest and best studied scalar field theories. Their hamiltonian reads:

H =

Z
ddx
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where ' is a N -component field. It is widely believed that their physics is almost fully understood in all dimensions
at least at a qualitative and semi-quantitative level. This belief relies on the fact that all theoretical methods,
including numerical simulations, yield the same picture. The best known analytical methods are the ✏- [4, 5] and
1/N -expansions [1–3] and the high and low temperature series [6]. More recently, the nonperturbative, also called
functional, renormalization group (NPRG) and the conformal bootstrap [7] have also been important achievements.

The common belief is that we will perhaps never have an exact solution of these models in three dimensions but
this is not very important because we already know everything as for their critical behavior. By using the NPRG,
we show in this article that this statement is wrong and that plenty of unknown and unexpected features show up in
these models and not only in three dimensions.

The interest of our study is four-fold.
First, we show in the following that there exist new and nontrivial fixed points (FPs) of the renormalization group

(RG) in the 3d O(N) models that can drive the tricritical physics contrary to the common belief that the upper critical
dimension of tricritical physics is 3 for O(N) models because it is driven by the ('2)3 term which is renormalizable
in d = 3 [10]. It can be shown that this also holds true for penta-critical physics in lower dimensions and that the
tetra-critical FP also shows nontrivial features in the N ! 1 limit [13].

Second, we show why these new FPs were not found previously in any approach. In particular, we show that the
usual large N limit is inappropriate to find all the relevant FPs of the O(N) model at N = 1 even though it was
claimed in the literature that a complete and exact solution for all possible O(N) FPs at N = 1 was available. We
also show how to generalize the large N limit so as to find the other physically relevant FPs at N = 1, more precisely,
those that are relevant for multicriticality.

Third, we show that the existence of these new FPs is intimately related to the existence of FPs with a cusp at
N = 1, that is, of FPs whose effective potential Ũ(�̃) is singular and typically shows a cusp at some value of the field
�̃ [11]. This feature is interesting because FPs exhibiting a cusp in their effective potential have already been found
but mainly in disordered or out of equilibrium systems [14–16] but not in systems as simple as the O(N) model.

Fourth, we exhibit a nontrivial homotopic structure related to the existence of the new FPs. A FP potential Ũ is
of course a function of the field �̃ but is also a function of d and N : Ũ = Ũ(�̃, d,N). We find in certain regions of the
(d,N) plane that for a given couple of values of d and N there exist two distinct FPs that have the same number of
infrared unstable eigendirections: They are both tricritical for instance. We then show that these FPs are bi-valued
in the (d,N) plane, that is, when continuously followed along certain closed paths of this plane they are exchanged
after one cycle along these paths and two cycles are needed to retrieve the FP we started with. This bi-valued nature
of the new FPs is shown to be necessary to get a fully consistent picture of the new FPs in the (d,N) plane including
N = 1.

Finally, it is interesting to notice that the recourse to functional RG is mandatory in our study because the usual
field theoretical approaches based on a Taylor expansion of the action cannot deal with singular effective potentials
and/or with the non conventional scaling in N that is required to find the new FPs when N ! 1, see below.

An important output of our study is to solve a paradox of the large N limit of the O(N) models. The paradox can
be stated in the following way. On one hand, the only nontrivial FP that was found in generic dimensions d 2]2, 4[
at N = 1 in the usual large N limit of the O(N) models was the Wilson-Fisher (WF) critical point. On the other
hand, for all finite values of N , each time the dimension d crosses one of the critical dimensions dc(p) = 2 + 2/p, a
new multi-critical FP appears below dc(p) and it is p times unstable. All these multi-critical FPs bifurcate from the
Gaussian FP. For all N and for a given p, they are therefore found perturbatively in the ✏ = dc(p) � d expansion.
The paradox comes from the fact that it is a priori impossible to reconcile these two well-established facts: either
the FPs found perturbatively in d = dc(p) � ✏ survive at fixed and finite ✏ when N ! 1 and the question is: “Why
aren’t they found at N = 1 in the usual large N limit?”, or they disappear at finite ✏ when N is increased and this
must occur by colliding with other FPs. In this latter case, the question is: “What are these other – unknown – FPs
with which the perturbative multi-critical FPs collide and disappear at large N?”. We show in the following that
the two possibilities mentioned above are realized: existence of FPs at N = 1 not found in the usual large N limit
and collision of perturbative multi-critical FPs with other, nonperturbative, FPs. This solves completely the above
paradox at the price of revisiting the large N limit of the O(N) models and finding nonperturbative FPs.

In the present paper, we study in detail the usual, that is, perturbative tricritical FP and find all the necessary FPs
to understand the fate of this tricritical FP when both d and N are varied.

Since our study deeply questions the large N limit of the O(N) models, let us first revisit its usual implementations.



Usual large N limit of the 
LPA flow

• The terms proportional to 1/N are assumed to be 
subleading. 

• At  N=∞, the resulting NPRG eq without an explicit 
1/N dependence was believed to be exact and can 
be solved exactly.

Rescaled finite N equation Ũt = NŪt �̃ =
p
N �̄
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Usual large N limit of the 
LPA flow

• The only nontrivial solution is Wilson Fisher FP 
solution in generic dimensions 2<d<4. 

• In                                    , we have a line of 
multicritical FPs starting from the Gaussian FP  

• We show that the procedure described here is too 
restrictive.
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Renormalization group FPs  
showing cusps

We will show that they also play an important role in simple 
field theories such as  models.O(N)
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FIG. 1: (color online) Left: Flows in d = 1 of the linear
couplings �n(k) = V 0

n,k(0) in the semi-functional approach,
Eq.(9). Right: Same when Uk is expanded in both  and  ̄
and infinitesimal linear couplings are considered (�1(k = ⇤) =
0, �2(k = ⇤) = 10�8, all other rates are of order 1). Only
terms at most quartic in the fields have been retained. The
RG flow of all couplings remains finite but shows an abrupt
change around kc ' 0.6.

�i !  i. They impose that 8n: V 0
n,k=⇤( = 0) = 0: the

bare potential has no linear term in �. Perturbatively,
it is easy to show that these terms cannot be generated
in Uk since all Feynman diagrams involve at least two
incoming particles and thus two fields  .

We have numerically integrated the coupled flow equa-
tions of the functions Vn,k( ) with N = 4 (see Eqs.(10)
for the N = 3 case) together with the initial conditions
provided by S, Eq.(1). In the early stage of this flow, the
linear term of each of these functions remains identically
zero as naively expected. However, at a finite scale kc

which is typically the scale where the perturbative flow
blows up, a linear term is generated in all these functions
(Fig.1): the potential Uk develops a corner at  = 0 and
its analytic structure is changed below kc.

A detailed study of the emergence of the linear terms
reveals that for k & kc, a boundary layer appears in
the Vn,k( ) functions such that in the inner part of the
layer, that is, at small  , these functions are expandable
around  = 0 (for  � 0) and start quadratically in  .
In the outer region, a linear part appears in the Vn,k( )
functions. As k approaches kc from above, the width of
the layer decreases and vanishes at kc, leaving the linear
term as the dominant term around  = 0 (Fig.2). Below
kc, the linear terms remain present in the vicinity of  =
0 and the flow can be continued all the way to k = 0. We
have checked that this emerging scenario holds at order
N = 3 and 4 of the  ̄-expansion. Converged, higher-
order results are unfortunately di�cult to obtain [33].

We have confirmed our scenario by considering the
usual set of reactions 2A ! 3A, 2A ! ; and 3A ! ;
complemented by A ! 2A and A ! ; with infinitesimal
rates. Expanding the potential Uk in both  and  ̄ we
now have (at least) two new couplings that are linear in
 : �1(k)  ̄ and �2(k)  ̄2 with �1,2(k = ⇤) infinites-
imal. If the limit �1,2(k = ⇤) ! 0 were regular then
�1,2(k) would start playing a significant role in the RG
flows of the other couplings only below a very small scale
k that would go to 0 as �1,2(k = ⇤) ! 0. We find on
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FIG. 2: (color online) Boundary layer for V3,k( ), whose be-
havior around the origin is displayed for k ' kc and several
values of k above kc. For all k > kc, V3,k starts quadratically
at  = 0 whereas a linear term appears at k = kc. Inset:
width of the boundary layer as a function of log k/⇤.

the contrary that while for k just below ⇤ the flows of all
the couplings are indeed almost insensitive to �1,2 (when
they are initially extremely small), this is no longer the
case for k ' kc since the dramatic increase of g2(k) makes
�1,2(k) grow abruptly around kc, independently of their
initial smallness, see Fig. 1. For k close to kc, the back
reactions of �1,2(k) on the flows of all the other couplings
start to be significant and eventually modify them com-
pletely since �1,2 are the most relevant couplings. The
RG flow is no longer singular (g2(kc) remains finite) but
lives below kc in a larger functional space involving the
couplings linear in  . This result is fully consistent with
what is found in the functional viewpoint.

Criticality in d = 1. Our two di↵erent approaches
both conclude that terms linear in  are generated be-
low a nonuniversal scale kc in d = 1. We can therefore
consider the field theory obtained just below kc as a new
field theory that can be studied per se, the di�culty be-
ing that its action is non polynomial since the functions
Vn,k( ) are not. In a perturbative analysis only the terms
of lowest degrees in  and  ̄ would be retained in the bare
action, i.e.   ̄,  2

 ̄ and   ̄2. Depending on the relative
sign of the two cubic terms, this action, truncated at or-
der three, exhibits one of the following symmetries (after
a trivial rescaling of the fields):  ̄(t) � ± (�t). The
minus sign corresponds to the cubic terms having oppo-
site signs. This is the “rapidity” symmetry defining the
DP class. The other sign defines a new, “conjugated”,
symmetry. We call the corresponding class DP’. It is
easy to show in our framework, Eq.(8), that when only
the above terms are kept in Uk, only two nontrivial fixed
points exist and that they show either one or the other
of the above symmetries (we call them DP and DP’).
No such result exists beyond this simple truncation. To
the best of our knowledge, the DP’ symmetry has never
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Damien Gredat,1 Hugues Chaté,1, 2 Ivan Dornic,1 and Bertrand Delamotte2
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We study the nonequilibrium critical behavior of the pair contact process with di↵usion (PCPD)
by means of nonperturbative functional renormalization group techniques. We show that usual
perturbation theory fails because the e↵ective potential develops a nonanalyticity at a finite length
scale: Perturbatively forbidden terms are dynamically generated and the flow can be continued once
they are taken into account. Our results suggest that the critical behavior of PCPD can be either
in the directed percolation or in a new (conjugated) universality class.

Reaction-di↵usion systems involving one particle
species (also known as branching and annihilating ran-
dom walks (BARW)) are stochastic out of equilibrium
systems important from both a phenomenological and a
theoretical viewpoint. They consist of identical particles
A, di↵using on a d-dimensional lattice, that can branch
(nA ! (n + p)A) or annihilate (nA ! (n � q)A). The
competition between these two types of reaction is gener-
ically responsible for the existence of transitions between
an active phase where the density of particles is finite,
and an “absorbing” phase where all particles, and thus
all fluctuations, have disappeared. Such models provide
the building blocks of a large variety of applications and
models in physics and beyond, and are therefore of fun-
damental importance [1]. They also have the advantage
of providing a relatively simple theoretical framework for
the study of the di↵erent universality classes of absorbing
phase transitions.

Our understanding of out-of-equilibrium critical phe-
nomena in general and absorbing phase transitions in
particular has benefited from perturbative approaches
[5, 6], but important advances were brought recently by
the application of nonperturbative renormalization group
(NPRG) methods [2–4, 7]. For the two prominent cases of
BARW, A ! 2A, 2A ! ; which represents the directed
percolation (DP) class, and A ! 3A, 2A ! ; which be-
longs to the parity-conserving, or generalized voter class,
the success of the NPRG owed to the presence of non-
perturbative features.

The case of the “pair contact process with di↵usion”
(PCPD) has largely resisted analysis so far [8] but was
not studied with NPRG methods. The simplest BARW
model in this class consists of reactions 2A ! 3A and
2A ! ; with rates � and �. (A limiting reaction such
as 3A ! ;, with rate �

0, is actually needed to ensure a
finite density active phase [32].) The distinctive feature
of the PCPD is that two particles must meet to trig-
ger branching. On general grounds, this is not expected
to be a relevant ingredient defining universality classes,
hence the interest raised by results obtained so far on the
critical behavior of PCPD: It has been intensively stud-

ied numerically in d = 1 but remains unclear because of
the presence of slow dynamics and/or strong corrections
to scaling [13]. The debate, ongoing still recently, is to
know whether PCPD belongs to the DP universality class
[13–15] or not [16–19].
Even the status of dc, the upper critical dimension of

PCPD, is unclear: numerically, d = 3 seems beyond it
[20], but in d = 2, the presence of large corrections to
scaling is di�cult to disentangle from logarithmic terms
preventing clear conclusions in spite of indications of
mean-field behavior [21, 22]. In perturbation theory the
RG flow of PCPD goes to the Gaussian fixed point for
d > 2 and su�ciently small coupling constants, whereas
it blows up at a finite scale for larger couplings or for
d < 2 [9]. This suggests dc = 2. Note that the ex-
plosive flow forbids the exploration of the long-distance
physics of the model. This is also known to occur in
quantum chromodynamics (at the confinement scale), in
the O(N) nonlinear sigma model (at the scale of the cor-
relation length) [10], and in pinned elastic manifolds (at
the Larkin length) [11]. In this last case, NPRG methods
at the functional level allowed to treat the problem [12].
In this Letter, we examine the PCPD field theory in

the light of the NPRG, explain why perturbation theory
fails, and how to avoid its problems. We show that the
potential in the running e↵ective action develops a sin-
gularity at a finite scale, signalling that couplings that
are perturbatively forbidden are dynamically generated.
Once taken into account the RG flow can be continued
and a fixed point can be found. Our results suggest that
the critical behavior of the model is either in the DP class
or possibly in a new class characterized by a “conjugated”
symmetry, and that dc = 2 only at small coupling. Our
study indicates that NPRG is a powerful tool for dealing
with similar situations beyond reaction-di↵usion systems.

The field theory associated with PCPD. By using the
usual Doi-Peliti formalism [23] it is possible to derive the
action associated with PCPD from first principles:
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Z
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Damien Gredat,1 Hugues Chaté,1, 2 Ivan Dornic,1 and Bertrand Delamotte2
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scale: Perturbatively forbidden terms are dynamically generated and the flow can be continued once
they are taken into account. Our results suggest that the critical behavior of PCPD can be either
in the directed percolation or in a new (conjugated) universality class.

Reaction-di↵usion systems involving one particle
species (also known as branching and annihilating ran-
dom walks (BARW)) are stochastic out of equilibrium
systems important from both a phenomenological and a
theoretical viewpoint. They consist of identical particles
A, di↵using on a d-dimensional lattice, that can branch
(nA ! (n + p)A) or annihilate (nA ! (n � q)A). The
competition between these two types of reaction is gener-
ically responsible for the existence of transitions between
an active phase where the density of particles is finite,
and an “absorbing” phase where all particles, and thus
all fluctuations, have disappeared. Such models provide
the building blocks of a large variety of applications and
models in physics and beyond, and are therefore of fun-
damental importance [1]. They also have the advantage
of providing a relatively simple theoretical framework for
the study of the di↵erent universality classes of absorbing
phase transitions.

Our understanding of out-of-equilibrium critical phe-
nomena in general and absorbing phase transitions in
particular has benefited from perturbative approaches
[5, 6], but important advances were brought recently by
the application of nonperturbative renormalization group
(NPRG) methods [2–4, 7]. For the two prominent cases of
BARW, A ! 2A, 2A ! ; which represents the directed
percolation (DP) class, and A ! 3A, 2A ! ; which be-
longs to the parity-conserving, or generalized voter class,
the success of the NPRG owed to the presence of non-
perturbative features.

The case of the “pair contact process with di↵usion”
(PCPD) has largely resisted analysis so far [8] but was
not studied with NPRG methods. The simplest BARW
model in this class consists of reactions 2A ! 3A and
2A ! ; with rates � and �. (A limiting reaction such
as 3A ! ;, with rate �

0, is actually needed to ensure a
finite density active phase [32].) The distinctive feature
of the PCPD is that two particles must meet to trig-
ger branching. On general grounds, this is not expected
to be a relevant ingredient defining universality classes,
hence the interest raised by results obtained so far on the
critical behavior of PCPD: It has been intensively stud-

ied numerically in d = 1 but remains unclear because of
the presence of slow dynamics and/or strong corrections
to scaling [13]. The debate, ongoing still recently, is to
know whether PCPD belongs to the DP universality class
[13–15] or not [16–19].
Even the status of dc, the upper critical dimension of

PCPD, is unclear: numerically, d = 3 seems beyond it
[20], but in d = 2, the presence of large corrections to
scaling is di�cult to disentangle from logarithmic terms
preventing clear conclusions in spite of indications of
mean-field behavior [21, 22]. In perturbation theory the
RG flow of PCPD goes to the Gaussian fixed point for
d > 2 and su�ciently small coupling constants, whereas
it blows up at a finite scale for larger couplings or for
d < 2 [9]. This suggests dc = 2. Note that the ex-
plosive flow forbids the exploration of the long-distance
physics of the model. This is also known to occur in
quantum chromodynamics (at the confinement scale), in
the O(N) nonlinear sigma model (at the scale of the cor-
relation length) [10], and in pinned elastic manifolds (at
the Larkin length) [11]. In this last case, NPRG methods
at the functional level allowed to treat the problem [12].
In this Letter, we examine the PCPD field theory in

the light of the NPRG, explain why perturbation theory
fails, and how to avoid its problems. We show that the
potential in the running e↵ective action develops a sin-
gularity at a finite scale, signalling that couplings that
are perturbatively forbidden are dynamically generated.
Once taken into account the RG flow can be continued
and a fixed point can be found. Our results suggest that
the critical behavior of the model is either in the DP class
or possibly in a new class characterized by a “conjugated”
symmetry, and that dc = 2 only at small coupling. Our
study indicates that NPRG is a powerful tool for dealing
with similar situations beyond reaction-di↵usion systems.

The field theory associated with PCPD. By using the
usual Doi-Peliti formalism [23] it is possible to derive the
action associated with PCPD from first principles:

S =

Z

x
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�
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Γ(1...1)
k,p [φ1, ...,φp] with its full functional dependence on

the p field arguments, one needs to consider at least p
copies. Formally, the whole hierarchy of flow equations
for the cumulants can thus be obtained by considering
an arbitrary large number of copies. As an illustration,
the ERGE for the first cumulant reads

∂tΓk,1 [φ1] =
1

2

∫

q

{
∂tR̃k(q

2)P̂k;q −q [φ1]

+ ∂tR̂k(q
2)P̃k;q −q [φ1,φ1]

}
,

(11)

where P̂k[φ] =
(
Γ(2)
k,1[φ] + R̂k

)−1
and P̃k[φ1,φ2] =

P̂k[φ1](Γ
(11)
k,2 [φ1,φ2] − R̃k)P̂k[φ2] are obtained as the

zeroth-order terms of the expansion of the modified prop-
agator Pk;(a,x

1
)(b,x

2
) that generalizes Eqs. (7) and (10).

The above ERGE coincides with that previously derived
without the superfield formalism by means of an expan-
sion in number of free replica sums (when evaluated at
T = 0). The same is true for the ERGE for all higher-
order cumulants: for explicit expressions, see [6].
The (super)symmetries of the modified action in Eq.

(5) are linearly realized and induce a set of WT identities
for the 1PI generating functional Γk.8 Taking functional
derivatives of these identities with respect to the super-
field and evaluating the resulting relations for superfield
configurations Φ(x) = φ(x) leads to relations for the cu-
mulants. The most powerful relations mix cumulants of
orders p and (p+1), the first nontrivial illustration of the
latter kind being

∂1µΓ
(11)
k2;x1;x2

[φ,φ]−
∆B

2
(xµ

1 − xµ
2 )Γ

(2)
k1;x1,x2

[φ] =

−

∫

x3

φ(x3)∂3µΓ
(21)
k2;x1,x3;x2

[φ,φ],
(12)

which for fields that are also uniform in the Euclidean
space gives a relation similar to that for the cutoff func-

tions: Γ(11)
k,2 (q2;φ,φ) = ∆B∂q2Γ

(2)
k,1(q

2;φ).
An important feature of the present superfield theory

is that SUSY leads to DR: this is obtained nonperturba-
tively by combining the WT identity in Eq. (12) with the
ERGE for the first cumulant in Eq. (11) and by follow-
ing the line of reasoning of Refs. [9]. As one knows that
DR does not hold in low enough dimension, what then
goes wrong in the formalism ? The answer is that SUSY,
more precisely invariance under the superrotations when
the theory is restricted to a single copy, is spontaneously
broken along the flow and that a singularity occurs. From
an analysis of the structure of the flow equations, we ex-
pect that breaking of DR requires the presence of a linear

“cusp” in the field dependence of Γ(11)
k2 , cusp that should

appear at a finite scale during the RG flow. (On the

other hand, weaker nonanalyticities in Γ(11)
k2 and nonan-

alyticities in higher-order cumulants can only appear at
the fixed point, in the limit k → 0, thereby preserving the
DR property.) This of course must be checked in actual
calculations, which is what we provide below.
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FIG. 1. NP-FRG flow of the dimensionless cumulant δk(ϕ+
y,ϕ− y) in d = 4 < dDR for ϕ = 0 and for initial conditions
close to the critical point. A linear cusp in |y| appears at a
finite RG ”time” |t| = log(Λ/k).

If SUSY is spontaneously broken, how can one continue
the RG flow for the effective average action ? The original
formal construction a priori loses its meaning, but a non-
trivial continuation can be found if (i) one assumes that,
except for the superrotations, all of the properties and
symmetries of Γk remain valid; most importantly, this
includes the “Grassmannian ultralocality” encompassed
in Eq. (10) that enforces single-solution dominance11, (ii)
one only considers ERGE’s for cumulants evaluated for
generic (nonequal) field arguments, so that a putative
nonanalytic dependence can freely emerge, and (iii) one
modifies the regulator by replacing ∆B by a running ∆k

which is the typical strength of the renormalized random
field at scale k. More specifically, and in order to reach a
fixed point and a scale-free solution describing the critical
behavior of the RFIM, we choose R̂k(q2) = Zkk2r(q2/k2)
and R̃k(q2) = −(∆k/Zk)r′(q2/k2); Zk and∆k are respec-

tively obtained from ∂q2Γ
(2)
k1 (q

2) and Γ(11)
k2 (q2) evaluated

for q2 = 0 at zero field, and choices for the function r are
given in [6, 10, and 12]. From Eq. (12) and below, one
can see that so long as SUSY is not broken, ∆k = ∆BZk

and the regulator is SUSY invariant, which guarantees
the consistency of the RG description.
Finally, we provide a SUSY-compatible nonperturba-

tive approximation scheme for the ERGE. We combine
truncations in the derivative expansion, which approxi-
mate the long-distance behavior of the 1PI vertices, and
in the expansion in cumulants of the renormalized disor-
der. The WT identities require that the orders of trun-
cation in the two types of expansions be related. The
minimal truncation that can already describe the long-
distance physics of the RFIM and does not explicitly
break SUSY is the following:

Γk,1[φ] =

∫

x

[
Uk(φ(x)) +

1

2
Zk(φ(x))(∂µφ(x))

2

]
,

Γk,2[φ1,φ2] =

∫

x

Vk(φ1(x),φ2(x)),

(13)
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where Ji · �i =
P2

i=1

´
x Ji (x) · �i (x) , and �Hk =P2

i=1 �i(x) · Rk(x � y) · �i(y). The idea underlying the
effective average action is to integrate in Zk only the
fluctuations of large wave-numbers (rapid modes) com-
pared to k while freezing the others (slow modes) and
to progressively decrease k. Rk(q2), which is the Fourier
transform of Rk(x), plays the role of separating rapid
and slow modes: It almost vanishes for |q| > k so that
the rapid modes are summed over and is large (of order
k2) below k so that the fluctuations of the slow modes
are frozen. We define as usual Wk[J i] = lnZk[J i]. Thus,
the order parameter 'j (x) at scale k is defined by

'i (x) = h�i (x)i =
�Wk [J i]

�J i (x)
(7)

The running effective average action �k ['i] is defined by
means of the modified Legendre transform by

�k ['i] = �Wk [J i] + Ji ·'i ��Hk ['i] (8)

where J i is defined such that Eq. (7) holds for fixed 'i.
From this definition one can show that

(
�k=⇤ ' H

�k=0 = �
, (9)

where the cutoff ⇤ is the inverse of the lattice spacing
a. Equations (9) imply that �k interpolates between the
hamiltonian of the system when no fluctuation has been
summed over, that is, when k = ⇤, and the Gibbs free
energy � when they have all been integrated, that is,
when k = 0. We define the variable t, called “RG time”,
by t = ln (k/⇤). The exact flow equation for �k reads [?
? ]:

@t�k['i] =
1

2
Tr

ˆ
x,y

@tRk(x�y)

✓
�2�k ['i]

�'↵
i (x) �'↵0

i0 (y)
+Rk (x� y) �i,i0�↵,↵0

◆�1

,

(10)
for ↵,↵0 = 1, 2, · · ·N and i, i0 = 1, 2.

IV. TRUNCATION OF THE NPRG EQUATION

It is generally not possible to solve exactly the above
flow equation and several approximations are employed in
practice. In this paper, we employ the so-called LPA (lo-
cal potential approximation) or LPA’. In these schemes,
�k is approximated by a series expansion in the gradient
of the field, truncated at its lowest non trivial order:

�k ['i] =

ˆ
ddx

✓
1

2
Zk

h
(@'1)

2 + (@'2)
2
i
+ Uk (⇢, ⌧)

◆
,

(11)
where the k-dependent potential Uk (⇢, ⌧) is defined as

⌦Uk (⇢, ⌧) = �k ['i] (12)

where 'i, i = 1, 2 are constant fields and ⌦ is the vol-
ume of the system. Zk is assumed to be independent of

the fields 'i in both LPA and LPA’. It is set to one in
LPA: ZLPA

k = 1, which leads to a vanishing anomalous
dimension: ⌘ = 0. In LPA’ calculations, the anomalous
dimension ⌘ is obtained from the flow of Zk since it can
be shown that at criticality:

Zk!0 ⇠
✓
k

⇤

◆�⌘

. (13)

We give a precise definition of Zk in Appendix A as well
as of ⌘. At criticality, the k-dependent effective action is
attracted towards the fixed point solution of the NPRG
equation once it is expressed in terms of the dimensionless
renormalized fields  ̃i and a dimensionless local potential
Ũk( ̃i). We thus define the dimensionless and renormal-
ized quantities:

 ̃i =
�
Zkk2�d

�1/2
 i

Ũk( ̃i) = k�dUk ( i) .
(14)

We expand the fixed point potential in the following form

Ũk

⇣
 ̃1,  ̃2

⌘
=

2n+4m14X

n,m=0

1

n!m!
ãn,m (⇢̃� ̃)n ⌧̃m, (15)

and solve the flow equation for the coupling constants
ãn,m. In the following calculations, we truncate the ex-
pansion at the 14-th order of  i for i = 1, 2.

V. RESULTS FOR FINITE BUT LARGE N

Here we explain the results for finite N as shown in
Fig. 1. C�, C�� and C��� exist in d0c (N) < d < 4,
d0c (N) < d < d00c (N) and 2 < d < d00c (N), respectively,
for sufficiently large N & 20. C�, C�� and C��� are
the multicritical fixed points with two, three and two
relevant directions. There occur the following saddle-
node bifurcations: In decreasing d with fixed N & 20,
firstly in d = d00c (N), C�� and C��� appear as a pair of
unstable and stable fixed points with respect to the RG
trajectory joining them. Secondly in d = d0c (N), C� and
C�� fixed points collide with each other and vanish.

In Fig. 1, we also plot the curve Nc (d) on which C�
and C�� fixed points collides with each other and van-
ish. This curve Nc (d) was obtained with another full-
funtional treatment of the local potential approximated
NPRG flow equation, which will be explained elsewhere.

For N & 20, we have confirmed that increasing the or-
der of truncation only slightly changes d0c (N) and d00c (N).
For smaller d and N , our field expansion method is not
very accurate because of poor convergence of the ex-
pansion, which have been often the case for NPRG cal-
culations. From this result, we cannot see the behav-
ior of d0c (N) and d00c (N) for smaller N and more ac-
curate numerical method would be necessary for that
purpose. For the moment, nevertheless, one can make
the following conjecture by simple extrapolation of the

NPRG equation (Wetterich, Phys. Lett. B, 1993) is 

2

FIG. 2. The two curves Nc(d) and N ′
c(d) respectively defined

by T2 = C3 and C2 = C3 and the curve 3.6/(3 − d). Nc(d)
is calculated with the LPA (red circles) and at order 2 of the
derivative expansion (blue squares). We show a path joining
the point Q located at (d = 3−, N = 40) to the point at
N = ∞ and d = 2.8.

Let us first assume that for the O(N) models, the ex-
act RG flow equation of the Gibbs free energy Γ – also
called effective action – is continuous in d and N . Then,
assuming moreover that the FPs Γ∗ of these flows are
well-defined functions of d and N , they must also be
continuous functions of these parameters and can there-
fore be followed smoothly in the (d,N) plane. For con-
stant fields, the functional Γ∗[φ] reduces to the effec-
tive potential U∗(φ). If U∗ can be Taylor expanded:
U∗(φ) =

∑
m g∗m(φ2)m with φ = 〈ϕ〉, the smoothness of

Γ∗ as a function of d and N implies that of the g∗m which
can therefore be followed continuously along a given path
of the (d,N) plane. Notice that we do not need in the
following to expand U∗. However, the same continuity
argument can be used on the function U∗ itself rather
than on its couplings.

Let us now consider for instance the tricritical FP T2.
The paradox appears when we try to follow smoothly T2

from a point in the (d,N) plane where we know from
perturbation theory that it exists to a point where, ac-
cording to the common wisdom, it is believed not to exist.
We consider for instance the path shown in Fig. 2 start-
ing at Q in d = 3− and N = 40 and going to N = ∞
in d = 2.8. How can we solve the apparent contradiction
that T2 should evolve continuously and that it exists at
one end of the path, that is, in Q, and not at the other
end? The simplest solution is that either T2 disappears
before reaching N = ∞ or it becomes singular at N = ∞.
We shall see in the following that both these possibilities
are indeed realized depending on the path followed to
reach N = ∞. In particular, we shall see that there ex-
ists a line Nc(d) (or equivalently dc(N)), see Fig.2, such
that when T2 is followed along a path that crosses this
line – such as the path shown in Fig. 2 that starts in
Q – it collapses with another FP on the line Nc(d) and
disappears. This is why T2 is not found at N = ∞ for
d < 3. And the paradox is now clear: According to the

common wisdom, no known FP is available for collapsing
with T2. We must therefore conclude that the common
wisdom yields an incomplete picture and that there is a
new FP – that we indeed find and call C3 – with which T2

collapses on Nc(d). Part of the solution to the paradox
above is that C3 is nonperturbative: It cannot emerge
from G in any upper critical dimension because the sta-
bility of G in the O(N) models is well-known for all d and
N from perturbation theory. This is why C3 has never
been found previously. Some natural questions are then:
What is the stability of C3? Does it exist in d = 3 for
some values of N? Is it the only nonperturbative FP of
the O(N) models? Since, most probably, it does not ap-
pear alone, where does it appear and together with which
other FP? Does it exist in the large-N limit and why is
it not found in the usual 1/N expansion [2, 3, 12]? It is
the aim of this Letter to provide a first study of these
different questions.
The method of choice for studying FPs beyond per-

turbation theory is the nonperturbative (also called func-
tional) renormalization group (NPRG) which is the mod-
ern implementation of Wilson’s RG. It allows us to de-
vice accurate approximate RG flows. The NPRG is based
on the idea of integrating fluctuations step by step [17].
In its modern version, it is implemented on the Gibbs
free energy Γ [18–21]. A one-parameter family of mod-
els indexed by a scale k is thus defined such that only
the rapid fluctuations, with wavenumbers |q| > k, are
summed over in the partition function Zk. The decou-
pling of the slow modes (|q| < k) in Zk is performed by
adding to the original O(N)-invariant (ϕ2)2 hamiltonian
H a quadratic (mass-like) term which is nonvanishing
only for these modes:

Zk[J ] =

∫
Dϕi exp(−H[ϕ]−∆Hk[ϕ] + J ·ϕ). (1)

with ∆Hk[ϕ] =
1
2

∫
q Rk(q2)ϕi(q)ϕi(−q) – where, for in-

stance, Rk(q2) = αZ̄kq2(exp(q2/k2)− 1)−1 with α a
real parameter and Z̄k the field renormalization – and
J · ϕ =

∫
x Ji(x)ϕi(x). The k-dependent Gibbs free en-

ergy Γk[φ] is defined as the (slightly modified) Legendre
transform of logZk[J ]:

Γk[φ]+ logZk[J ] = J ·φ− 1

2

∫

q
Rk(q

2)φi(q)φi(−q). (2)

with
∫
q =

∫
ddq/(2π)d. The exact RG flow equation of

Γk reads [19]:

∂tΓk[φ] =
1

2
Tr[∂tRk(q

2)(Γ(2)
k [q,−q;φ] +Rk(q))

−1] (3)

where t = log(k/Λ), Tr stands for an integral over q

and a trace over group indices and Γ(2)
k [q,−q;φ] is the

matrix of the Fourier transforms of the second functional
derivatives of Γk[φ] with respect to φi(x) and φj(y).
For the systems we are interested in, it is impossible to

solve Eq. (3) exactly and we therefore have recourse to
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FIG. 3. Singular point S and the two linesNc(d) (red squares)
and N ′

c(d) (blue stars). Starting from P , the FP T2 is followed
along a clockwise (left) or anti-clockwise (right) closed path
surrounding S. On the clockwise path, T2 becomes C2 after
a full rotation. On the anti-clockwise path, T2 collides with
C3 on Nc(d) and disappears. It actually becomes complex-
valued and remains so all along the dashed path. On N ′

c(d)
it becomes real again but is now C2. The path joining Nc(d)
and N ′

c(d) at fixed N = 33 is also shown in panel (a).

approximations. The most appropriate nonperturbative
approximation consists in expanding Γk[φ] in powers of
∇φ [23–32]. At order two of the derivative expansion, Γk

reads:

Γk[φ] =

∫

x

(
1

2
Zk(ρ)(∇φi)

2 +
1

4
Yk(ρ)(φi∇φi)

2

+Uk(ρ) +O(∇4)

)
.

(4)

where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ε = 4 − d (or ε = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ε′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
Material.

We have numerically integrated the fixed point equa-
tion for the effective potential: ∂tŨ∗ = 0, Eq. (??), at
the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
mension dc(N) by collapsing with a 3-unstable FP that
we call C3 as already explained above, see Figs. 2 and 3.
We find that the line Nc(d) is asymptotic to the d = 3
axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
of the Nc(d) curve is 3.6/(3− d), see Fig. 2.
We have checked that the picture above is quantita-

tively stable when we go from the LPA to the order two
of the derivative expansion, Eq. (4), see Fig. 2. This is
completely consistent with the fact that η is very small on
the curve Nc(d) for N sufficiently large and decreases at
largeN which makes the LPA flow of Uk exact atN = ∞.
For instance, for N = 40, we find dc(40) = 2.924 and in
this dimension, η = 1.7 10−3. Thus, although we have
no rigorous proof, we can safely claim that the existence
of C3 is doubtless and that the curve Nc(d) approaches
N = ∞ when d → 3. We show the T2 = C3 FP potential
shape on N = Nc(d) in the Supplemental Material. It is
a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
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the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
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sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
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c(d) is
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T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ε′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk
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collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
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T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
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it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
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have claimed above that the fate of T2 when N → ∞
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I. INTRODUCTION

The Kosterlitz-Thouless (KT) transition occurs in two-
dimensional systems with global O(2) symmetry such as the
two-dimensional XY model [1–3]. It has been observed in
liquid helium films [4–7], arrays of Josephson junctions [8],
trapped two-dimensional atomic gases [9–12], etc.

The KT transition differs from more conventional finite-
temperature phase transitions in a number of aspects. It is
not characterized by spontaneous symmetry breaking, and
the low-temperature phase exhibits algebraic order (rather
than true long-range order). Nevertheless, the system shows a
nonzero “stiffness” ρs(T ) for all temperatures T < TKT. Above
the transition temperature TKT, one observes a standard disor-
dered phase with exponentially decaying correlation functions.
However, the correlation length ξ does not diverge as a
power law of τ = T − TKT but shows an essential singularity
ξ ∼ exp(c/

√
τ ). The transition is also characterized by a jump

of the stiffness which vanishes for T > TKT and takes the
universal value 2/π for T → T −

KT [13,14].
The key role of topological defects (vortices) was rec-

ognized by Kosterlitz and Thouless who formulated the
KT transition as a vortex-antivortex-pair unbinding transition
[2,3,15–17]. Standard studies of the KT transition explicitly
introduce the vortices in the analysis and use a mapping
to the Coulomb gas or sine-Gordon models. A perturbative
renormalization-group approach is then sufficient to derive
the universal features of the KT transition.

The KT transition in the two-dimensional linear O(2) model
(ϕ4 theory for a two-component vector field) provides an
important benchmark for the nonperturbative renormalization
group (NPRG). A distinctive feature of the NPRG approach
is that the vortices are not introduced explicitly [18–20],
and thus the RG equations are the standard ones of the
d-dimensional O(N ) model with N = 2 and d = 2. In the
approach of Gersdorff and Wetterich (GW) [19], the KT
transition is not captured stricto sensu since the correlation
length is always finite. Nevertheless, below a “transition”
temperature TKT one finds a line of quasifixed points implying
a very large correlation length (although not infinite as

expected in the low-temperature phase of the KT transition).
Furthermore, the essential scaling of the correlation length
ξ above TKT is reproduced except in the immediate vicinity
of TKT. Thus, although the NPRG approach by GW does
not yield a low-temperature phase with an infinite correlation
length, it nevertheless allows one to estimate the KT transition
temperature and reproduce most of the universal features of
the transition.

Using a lattice version of the NPRG, TKT has been computed
with reasonable accuracy for the ferromagnetic XY model on
the square lattice [21]. The NPRG approach has also been used
to study two-dimensional superconductors [22] and bosonic
superfluids [23–26]. The superfluid transition temperature in
a two-dimensional Bose gas, with or without an optical lattice
[24,25], deduced from the NPRG approach turns out to be in
very good agreement with Monte Carlo simulations [27–29].

In spite of these successes, the NPRG approach to the
two-dimensional linear O(2) model is not fully satisfying.
First, from a conceptual point of view, one would like to
find a true transition between a high-temperature phase with
exponentially decaying correlations and a low-temperature
phase exhibiting algebraic order and a line of fixed points.
Second, from a more practical point of view, we expect the
NPRG approach to yield reasonable estimates not only of
the transition temperature TKT and the anomalous dimension
η(TKT) but also of the temperature dependence of the anoma-
lous dimension η(T ) and the stiffness ρs(T ) [including the
value of ρs(T −

KT)] in the low-temperature phase, which has not
been possible so far due to the absence of a line of true fixed
points at low temperatures.

In this paper, we reconsider the NPRG approach to the
two-dimensional linear O(2) model. While our RG equations
are the same as those of GW [19], we explore various ways to
set up the RG procedure. In particular we use the freedom in
the choice of the infrared regulator and the way the anomalous
dimension is computed. The commonly used exponential
regulator [30] with an arbitrary prefactor α considered as a
variational parameter, along with a fixed renormalization point
(see Sec. III B), allows us to find a transition with all expected
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propagator as

Gk,T(p; ρ0,k) = 2ρ0,k

ρs,kp2
, (11)

where 2ρ0,k = 〈ϕ(r)〉2 is the square of the order parameter
at scale k. Note that the momentum dependence of Gk,T in
Eq. (11) follows from the derivative expansion and is therefore
valid only for |p| # k. Alternatively, ρs,k can be defined from
the change "#k of the effective action when the direction of
the order parameter φ(r) =

√
2ρ0,k[cos θ (r), sin θ (r)] at scale

k varies slowly in space,

"#k[φ] = 1
2
ρs,k

∫
ddr (∇θ )2. (12)

Equations (11) and (12) lead to the same expression,

ρs,k = 2Zk(ρ0,k)ρ0,k, (13)

of the stiffness. The physical stiffness is defined as ρs(T ) =
limk→0 ρs,k(T ).

Equations (9) and (13) are crucial to understand the
long-distance behavior of the system when d = 2. In the
high-temperature phase both ρs,k and ρ0,k vanish for a nonzero
value of k of the order of the inverse of the correlation length
ξ . Zk reaches a finite limit for k → 0 since the anomalous
dimension η = limk→0 ηk vanishes. In the low-temperature
phase, we expect ηk and ρs,k to take a finite value in the limit
k → 0 (this implies Zk ∼ k−η for k → 0). This is possible
only if ρ0,k ∼ kη when k → 0, which is consistent with
ρ̃0,k = Zkρ0,k taking a finite limit (as expected for a critical
system). The result ρ0,k ∼ kη is in agreement with both the
absence of long-range order (limk→0 ρ0,k = 0) and an infinite
correlation length (ρ0,k > 0 for any k > 0).

III. NUMERICAL INTEGRATION OF RG EQUATIONS

A. Optimized regulator for d = 3

Let us first briefly review the determination of the critical
exponents in three dimensions. One can either integrate the
flow equations for various initial conditions until a fixed point
is reached, or linearize the flow equations about the fixed-point
solution defined by ∂t Ũ

∗ = ∂t Z̃
∗ = ∂t Ỹ

∗ = 0. If the flow
equation of the effective action #k[φ] were solved exactly, the
results would be independent of the infrared regulator Rk . This
is not the case when the effective action is expanded to second
order in a derivative expansion. In particular, with the regulator
(5), the critical exponents depend on the parameter α. We
determine what we consider as the optimal value of α from the
principle of minimal sensitivity (PMS) [39], i.e., by demanding
that locally the critical exponents are independent of α (e.g., for
the correlation-length exponent ν, dν/dα = 0 for α = αopt).
The renormalization point ρ̃r is taken fixed (for numerical
convenience), and, provided the fixed point exists, a change
in ρ̃r is equivalent to a change in α [40] so that the critical
exponents obtained from the PMS are independent of ρ̃r. Thus
the k-dependent renormalization point ρ̃0,k , which becomes
k independent at small k since ρ̃0,k → ρ̃∗

0 at criticality, is
equivalent to any other choice ρ̃r = const.

The results for the critical exponents ν and η are shown
in Tables I and II for the three-dimensional O(2) and O(3)

TABLE I. Critical exponents ν and η in the three-dimensional
O(2) model obtained from the derivative expansion to second order
and the principle of minimum sensitivity. Also shown are the results
obtained from field theory (FT) and Monte Carlo (MC) simulations.

NPRG FT [36] MC [37]

ν 0.6707 0.6700(6) 0.6717(1)
η 0.047 0.0334(2) 0.0381(2)

models. They compare very well with results from field theory
(resummed perturbative theory) and Monte Carlo simulations.

B. Optimized regulator for d = 2

In the two-dimensional case we numerically integrate the
flow equations of Ũ ′

k,Z̃k,Ỹk starting at scale k = * with the
bare action (1) and for various values of r0 ∝ T − T0 (we
take u0/*

2 = 0.003). From the behavior of the RG flow in
the k → 0 limit, we can clearly identify a high-temperature
and a low-temperature phase. The high-temperature phase is
characterized by the vanishing of ρs,k and ηk at a nonzero
value of k. In the low-temperature phase, both ρs,k and ηk

remain finite for k → 0 while ρ0,k vanishes as a power law as
anticipated in the preceding section. The transition temperature
TKT is defined from the critical value r0c separating the two
phases.

In the low-temperature phase and at fixed ρ̃r, the long-
distance behavior of the RG flow depends on the infrared
regulator [i.e., the parameter α in (5)] in a crucial way. We
expect the RG trajectory to flow into a fixed point as in
the standard KT theory. ηk and ρs,k [and more generally the
functions Ũk(ρ̃), Z̃k(ρ̃), and Ỹk(ρ̃)] should then become k
independent for sufficiently small k. Figure 1 shows that for
an arbitrary value of α, in general we do not reach a fixed
point, and ρs,k and ηk exhibit only quasiplateaus at small k
with slopes that are either positive or negative depending on
α. Thus, for each temperature T < TKT (but not too small,
see below), it is possible to fine tune α such that we obtain a
true plateau. We view this particular value αopt ≡ αopt(T ) as
the optimal choice of the regulator. We find αopt(TKT) = 2.0
and αopt(T ) < 2 for T < TKT. In the high-temperature phase,
we take αopt = 2. In the following sections, we shall always
consider the optimal regulators. The fact that αopt changes with
T is a limitation of the derivative expansion used to solve the
flow equation (6). In the exact solution, we expect the RG flow
to reach a fixed point in the low-temperature phase regardless
of the choice of the regulator. It should be noted, however, that
a nonoptimal choice (α += αopt) leads to essentially the same
long-distance physics even though there is no fixed point. In
particular, the system exhibits algebraic order (except perhaps
at extremely large length scales). The ultimate fate of ρs,k and

TABLE II. Same as Table I but for the O(3) model.

NPRG FT [36] MC [38]

ν 0.719 0.7060(7) 0.7112(5)
η 0.0463 0.0333(3) 0.0375(5)
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FIG. 1. (Color online) ηk and ρs,k in the low-temperature phase
for α = 1.5,1.6,1.7,1.8,1.9,2 (from bottom to top in the inset of the
top figure and the reverse in the bottom inset) and a fixed temperature
T < TKT corresponding to r0 = −0.0016 (all figures are obtained
with u0/$

2 = 0.003 and $ = 1).

ηk as k → 0 (which depends on the sign of the slope of the
quasiplateau) is clearly irrelevant at macroscopic length scales
of interest [41].

The optimal value αopt ≡ αopt(ρ̃r) depends on ρ̃r, but the
universal features of the KT transition are independent of the
choice of (ρ̃r,αopt(ρ̃r)). In the low-temperature phase, when ρ̃r

is too large the propagator Gk = (%(2)
k + Rk)−1 does not remain

positive definite due to the appearance of a pole at finite k, and
the RG flow cannot be continued to lower k [35,42]. The lower
the temperature, the smaller the renormalization point should
be. We find that ρ̃r must always be smaller than the minimum
ρ̃0,k of the effective potential because, otherwise, a pole in
the propagator appears at finite RG time t . Thus, it is never
possible to choose ρ̃r = ρ̃0,k . Below a certain temperature,
even with ρ̃r = 0, it is not possible to avoid the appearance of
a pole in the propagator. The lowest temperature that can be
reached corresponds to an anomalous dimension η(T ) $ 0.17
(obtained with α = 1.45). It should be noted, however, that
the low-temperature regime T % TKT, which is dominated by
spinwave excitations, becomes trivial when one works with the
Goldstone boson (i.e., the phase of the complex field ϕ1 + iϕ2)
and there is no need to use the NPRG.

Figure 2 shows ρs,k and ηk for various temperatures below
the KT transition temperature, obtained with the optimal pa-
rameter αopt. The renormalized stiffness ρs(T ) = limk→0 ρs,k
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FIG. 2. (Color online) Anomalous dimension ηk and stiffness
ρs,k vs ln($/k) for α = αopt and various values of r0 from r0c $
−0.0015831 to r0c − 3.69 × 10−5.

and the anomalous dimension η(T ) = limk→0 ηk are obtained
from the plateau values of ρs,k and ηk . The highest temperature
for which we find a phase with a nonzero stiffness ρs(T )
provides an estimate r0c $ −0.0015831 of the KT transition
temperature TKT. We shall discuss other determinations of TKT
in the following sections.

C. Comparison with GW

GW [19] evaluate the anomalous dimension ηk at the
flowing minimum of the effective potential while we compute
it at a fixed value of the (rescaled) field. Moreover GW do
not use the prefactor α of the infrared regulator as a free
parameter. As pointed out above, the choice ρ̃r = ρ̃0,k leads to
the appearance of a pole in the propagator at finite k. We
emphasize that this is not an accuracy problem but rather
an intrinsic feature of the flow equations in the derivative
expansion to second order. To circumvent this difficulty, GW
solve the flow equations only for a finite (scale-dependent)
range of ρ̃ values around ρ̃0,k [43]. Even though the GW
approach provides a way of computing some of the features
of the KT transition, the flow is bound to converge to the
high-temperature phase, and the line of fixed points is in fact
missing. In this respect our solution is a definite improvement.
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We compute the critical exponents ν, η and ω of O(N ) models for various values of N by implementing the
derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually
denoted O(∂4)]. We analyze the behavior of this approximation scheme at successive orders and observe an
apparent convergence with a small parameter, typically between 1

9 and 1
4 , compatible with previous studies in

the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents
with a precision which is similar or better than those obtained by most field-theoretical techniques. We also
reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case,
where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat
exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.
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I. INTRODUCTION

Systems where microscopic degrees of freedom are
strongly coupled are notoriously difficult to analyze theo-
retically. This difficulty becomes even more involved if the
system is near a critical point because of the large number
of interacting degrees of freedom that must be treated si-
multaneously. From the theoretical viewpoint, two methods
are widely used to study these physical situations. The first
one was introduced by Wilson: the renormalization group
(RG) [1]. This technique, when used in conjunction with
perturbation theory, is able to describe systems with many
interacting degrees of freedom with a small or moderate
effective coupling among infrared degrees of freedom. The
perturbative implementation of the RG [2,3] has become an
efficient method both in statistical physics and in quantum
field theory when very different scales are present [4]. In
the realm of statistical physics, it has been used to describe
both equilibrium and out-of-equilibrium situations, it can deal
with quenched disorder, long range interactions, etc. A main
limitation of this approach is that it is based on an expansion
in some small coupling and it cannot be applied to systems
where no such small parameter is known. Moreover, the alge-
braic complexity of the calculation strongly increases with the
order of the expansion. Due to this complexity, only recently
progress has been made [5] and the perturbative series have
been pushed to seven loops. Another limitation of perturbative
RG is that the series do not converge in general and one has
to resort to some resummation techniques in order to make
precise predictions. These techniques always involve some
unknown parameters that must be fixed by using some extra

*gdepolsi@fisica.edu.uy

criterion, such as the principle of minimal sensitivity or the
principle of fastest apparent convergence (see below).

The other popular theoretical approach to critical systems
is computer simulations [6]. A major asset of these techniques
is their versatility: they can be applied to a large number of
situations, at criticality or away from criticality, even when
perturbative RG treatment might be very difficult. At a quan-
titative level, high precision estimates of the critical exponents
were obtained by these methods (see [3] for a review). A ma-
jor drawback is that it can require extremely large amounts of
computer time, and statistical and systematic errors only de-
crease slowly with the size of the simulation. To give an exam-
ple, for the Monte Carlo studies of criticality of the pure Ising
model, which are considered to be the most favorable case nu-
merically, the most extensive numerical study [7] reaches lat-
tice sizes of L = 300 in three dimensions (3D), for which 30
years of CPU time are needed. In the case of the most recent
simulation on the XY model [8], on which we comment later
on, the numerical effort is approximately four times bigger.

There also exist methods which apply only to some partic-
ular physical situations. Among these, let us cite the large-N
expansion, high- and low-temperature expansions. The other
method of choice for studying critical exponents uses confor-
mal field theory [9,10] which can be applied to a variety of
systems at equilibrium in their critical regime, which present,
on top of scale invariance, the whole conformal group. These
methods were first developed in the bidimensional case but
were more recently applied to higher dimensions, through the
conformal bootstrap (CB) program [11–13]. This led in the re-
cent past to an unprecedented precision on critical exponents
for the Ising model. Such methods are, however, unable to
access other quantities of physical interest, such as a phase
diagram.
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TABLE IV. Final results at various orders of the DE with ap-
propriate error bars for N = 1 in d = 3. Results for η and ν are
taken from [19]. Results of the CB ([13] for η and ν and [51] for
ω), MC [7], high-temperature expansion [52], and six-loop, d = 3
perturbative RG values [2], and ε expansion at order ε5 [2] and at
order ε6 [50] are also given for comparison.

ν η ω

LPA 0.64956 0 0.654
O(∂2) 0.6308(27) 0.0387(55) 0.870(55)
O(∂4) 0.62989(25) 0.0362(12) 0.832(14)
O(∂6) 0.63012(16) 0.0361(11)

CB 0.629971(4) 0.0362978(20) 0.82968(23)
Six-loop, d = 3 0.6304(13) 0.0335(25) 0.799(11)
ε expansion, ε5 0.6290(25) 0.0360(50) 0.814(18)
ε expansion, ε6 0.6292(5) 0.0362(6) 0.820(7)
High T 0.63012(16) 0.03639(15) 0.83(5)
MC 0.63002(10) 0.03627(10) 0.832(6)

universality class, presented in Table IV. It is worth stressing
that the results are very precise (particularly for ν and ω). At
first sight one could get the impression that the order O(∂6)
does not improve the results significantly with respect to order
O(∂4) for η and ν. However, this only reflects our poorer
experience on the behavior of the DE at order O(∂6) and
the consequent use of a much more pessimistic estimate of
central values and error bars. In fact, by looking directly at the
raw data presented in Table I one observes that the DE does
give better estimates for any regulator at successive orders,
including order O(∂6).

Another strategy in order to estimate central values fol-
lowed in Ref. [19] is to exploit the whole series of data for
a given exponent in order to extrapolate the central value
and error bars. This strategy gives better estimates of central
values and a smaller error bar. However, we follow here a
strategy that can be implemented for O(N ) models where we
only have at our disposal the results for the DE up to order
O(∂4). More generally, we propose a general method that can
be employed safely for very general models where, in most
cases, the DE has only been studied up to order O(∂2).

B. Controversial N = 2 case: Derivative expansion take

The N = 2 case describes the important XY universality
class that corresponds to many physical systems, including
easy plane magnetic systems and the λ transition of the
helium-4 superfluid. For a classical review of various systems
in this universality class, we refer to [3]. The O(2) case is par-
ticularly important because, as discussed in the Introduction,
there is a long-standing controversy concerning the value of
the critical exponent ν between the most precise experiments7

[23] and the best theoretical estimates given by some MC
simulations [54,55] and very recent CB results [24]. Most

7Indeed, the critical exponent that is actually measured is the
specific heat exponent α for the transition of the superfluid helium-
4, that can be related to ν by a hyperscaling relation. See also [53]
for estimations of the specific heat of helium-4.

TABLE V. Final results at various orders of the DE with appro-
priate error bars for N = 2 in d = 3. Results to the CB from 2016
([56] for η and ν and [58] for ω) and also from 2019 [24], combined
MC and high-temperature analysis from [54] and recent (2019) MC
from [8], and six-loop, d = 3 perturbative RG values [2], and ε

expansion at order ε5 [2] and order ε6 [50] are also given for compari-
son. Results for most precise experiments are also included: helium-4
superfluid from [23,59] for ν, XY antiferromagnets (CsMnF3 from
[60] and SmMnO3 from [61]), and XY ferromagnets (Gd2IFe2 and
Gd2ICo2 from [62]). Whenever needed, scaling relations are used in
order to express results in terms of η and ν.

ν η ω

LPA 0.7090 0 0.672
O(∂2) 0.6725(52) 0.0410(59) 0.798(34)
O(∂4) 0.6716(6) 0.0380(13) 0.791(8)

CB (2016) 0.6719(12) 0.0385(7) 0.811(19)
CB (2019) 0.6718(1) 0.03818(4) 0.794(8)
Six-loop, d = 3 0.6703(15) 0.0354(25) 0.789(11)
ε expansion, ε5 0.6680(35) 0.0380(50) 0.802(18)
ε expansion, ε6 0.6690(10) 0.0380(6) 0.804(3)
MC+High T (2006) 0.6717(1) 0.0381(2) 0.785(20)
MC (2019) 0.67169(7) 0.03810(8) 0.789(4)

Helium-4 (2003) 0.6709(1)
Helium-4 (1984) 0.6717(4)
XY -AF (CsMnF3) 0.6710(7)
XY -AF (SmMnO3) 0.6710(3)
XY -F (Gd2IFe2) 0.671(24) 0.034(47)
XY -F (Gd2ICo2) 0.668(24) 0.032(47)

field-theoretical methods [2,56] (including CB before [24])
have been unable to settle the issue because of the high level of
precision reached by experiments and simulations. Indeed, as
discussed in [55], there is even a discrepancy among various
MC results that in some cases give results compatible with
experiments [57], but a consensus seems to have been reached
that the most precise simulations [8,54,55] are very far away
from the experimental prediction. We present now our O(∂4)
DE estimate of critical exponents η, ν, and ω.

The raw data for these exponents obtained at successive
orders of the DE for the same regulators mentioned in the
previous section are presented in Appendix A. We also in-
cluded in this table the previous results obtained with the DE.
As for N = 1, for all considered families of regulators the
concavity of the curves of exponents η and ν as a function
of the parameter α alternates (see Fig. 3). Moreover, the
results at successive orders of the DE are disjoint, which
strongly indicates alternating bounds on the critical exponents
at this order of the DE. Accordingly, we employ the improved
estimate of central values and error bars presented in Sec. IV B
for those exponents. The corresponding results are presented
in Table V where they are compared to other results in the
literature both theoretical and experimental. Special attention
must be given to the exponent ω where it is seen in Fig. 3
that the results at order (∂2) and (∂4) intersect. Moreover,
the LPA curve, which is below the O(∂2) one, presents a
minimum, not a maximum. The various orders of the DE
definitely do not give bounds on that exponent. We therefore
use for this exponent the more conservative estimate of error
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t(�̃) + (N � 1)
�̃

�̃+ Ũ 0
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Wilson-Polchinski version  
of NPRG 

2

of the theory: �⇤ ⇠ H, and the Gibbs free energy � of
the original model when k = 0: �k=0 = �. The exact
RG flow equation of �k gives the evolution of �k with k
between these two limiting cases and reads [13]:
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of the Fourier transforms of �2�k/��i(x)��j(y).
In most cases, Eq.(3) cannot be solved exactly and

approximations are mandatory. The best known approx-
imation consists in expanding �k in powers of r�i and to
truncate the expansion at a given finite order[8, 16–24].
The approximation at lowest order is dubbed the local
potential approximation (LPA). For the O(N) model it
consists in approximating �k by:
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The usual large N limit of the LPA flow [7] is obtained by
(i) replacing the factor N�1 by N , (ii) dropping the last
term in Eq.(5) because it is assumed to be sub-leading
compared to the term proportional to N , (iii) rescaling
the field by a factor

p
N and the potential by a factor N :

�̄ = �̃/
p
N , Ū = Ũ/N . As a consequence of these three

steps, the explicit dependence in N of the LPA flow of
Ū(�̄) disappears in the large N limit. The crucial point
is that the resulting LPA equation on Ū can be shown to
be exact in the limit N ! 1 [6]. Thus, the problem of
finding all FPs of the O(N) model: @tŪt(�̄) = 0 in the
limit N ! 1 boils down to solving the LPA FP equation
on Ū(�̄) having dropped the last term in Eq.(5). This
has been done in detail in several papers [7, 25]. The
result is the following: In a generic dimension d < 4
and apart from the gaussian FP, there is only one FP
which is the usual Wilson-Fisher FP. The exception to
the rule above occurs in the dimensions dc = 2+2/n with
n = 1, 2, · · · where there is also a line of FPs starting at
the gaussian FP and terminating at the Bardeen-Moshe-
Bander (BMB) FP[26–29].

We now show that the procedure described above is
too restrictive and eliminates some FPs that are physi-
cally relevant. The point is that the last term in Eq.(5),
which represents the contribution of the longitudinal

mode, is negligible compared to the term proportional
to N � 1, the contribution of the transverse modes, only
if it reaches a finite limit when N ! 1. We show that
this is not necessarily the case and that the last term
in Eq.(5) can also be of order N and can thus be non
negligible.
It is convenient for what follows to change variables.

Following ref. [30], we define: V (µ) = U(�)+ (���)2/2
with µ = �2 and � � � = �2�V 0(µ). As above, it is
convenient to rescale µ and V (µ): µ̄ = µ/N , V̄ = V/N .
In terms of these quantities, the FP equation for V̄ (µ̄)
following from Eq.(5) reads

0 = 1� d V̄ + (d� 2)µ̄V̄ 0 + 4µ̄V̄ 02 � 2V̄ 0 � 4

N
µ̄ V̄ 00. (6)

This equation has two remarkable features. First, it is
much simpler than Eq.(5) because the nonlinearity comes
only from the (V̄ 0)2 term. Second, its physical interpre-
taion is simple: it is the LPA equation obtained from
the Wilson-Polchinski version of the NPRG [31–34]: V
and U are therefore related by the Legendre transform
Eq.(2). Eq.(6) has therefore also been widely studied in
the literature. The usual large N analysis performed in
this version of the NPRG consists here again in neglect-
ing the last term in Eq.(6) because it is suppressed by a
factor 1/N [35]. Under the assumption that this term is
indeed negligible in the large N limit, the resulting equa-
tion becomes independent of N and an exact (implicit)
solution of this equation is known (see Supplemental Ma-
terial). However, at large N , it is clear on Eq.(6) that we
have to deal with singular perturbation theory since the
small parameter used for the expansion, that is, 1/N , is
in front of the term of highest derivative, that is, V̄ 00. In
this case, it is well-known that in general the term pro-
portional to V̄ 00 cannot be neglected and that singular
solutions can exist at ✏ = 1/N ! 0 [36]. Put it di↵er-
ently, at finite but large values of N , a boundary layer
can exist for a particular value of the argument µ̄ that
becomes a singularity at N = 1. We now show that this
is what indeed occurs.
It is particularly simple to understand on Eq.(6) why

and how at N = 1 a solution exhibiting an isolated
singularity for a given µ̄ = µ̄0 can exist. Consider the
intervals on the left and on the right of µ̄0. On these
intervals, V̄ (µ̄) is regular by definition. This implies that
the last term in Eq.(6) can safely be neglected at large
N on these two intervals. To get a singularity where
this term can play a role in (6) at N = 1, it is neces-
sary that the solutions on the left and on the right of µ̄0

match at µ̄0 but with two di↵erent slopes. It is trivial to
build such a solution: Take on the right of µ̄0 the Wilson-
Fisher solution of Eq.(6) (without the last term) and on
the left V̄ (µ̄) = µ̄/2 which is a trivial solution of (6).
The matching point is then trivially found numerically
as the intersection of these two curves (see Fig.3 in the
Supplemental Material). Then, at finite N , the boundary
layer around µ̄0 where the left and right solutions match
smoothly (but abruptly) can be easily computed at lead-
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t(�̃)+

(N � 1)
�̃

�̃+ Ũ 0
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� 1

2
d k

2�d
2 �
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truncate the expansion at a given finite order[8, 16–24].
The approximation at lowest order is dubbed the local
potential approximation (LPA). For the O(N) model it
consists in approximating �k by:

�k[�] =

Z

x

✓
1

2
(r�i)

2 + Uk(�)

◆
. (4)

where, by definition, � =
p
�i�i. Fixed points are found

only for dimensionless quantities and thus we define the

dimensionless field ⇢̃ and potential Ũk as �̃ = v
� 1

2
d k

2�d
2 �

and Ũk(�̃) = v�1
d k�dUk (�) with v�1

d = 2d�1d⇡d/2�(d2 ).

The LPA flow of Ũk reads:

@tŨt(�̃) = �d Ũt(�̃) +
1

2
(d� 2)�̃ Ũ 0

t(�̃)+

(N � 1)
�̃

�̃+ Ũ 0
t(�̃)

+
1

1 + Ũ 00
t (�̃)

.
(5)

The usual large N limit of the LPA flow [7] is obtained by
(i) replacing the factor N�1 by N , (ii) dropping the last
term in Eq.(5) because it is assumed to be sub-leading
compared to the term proportional to N , (iii) rescaling
the field by a factor

p
N and the potential by a factor N :

�̄ = �̃/
p
N , Ū = Ũ/N . As a consequence of these three

steps, the explicit dependence in N of the LPA flow of
Ū(�̄) disappears in the large N limit. The crucial point
is that the resulting LPA equation on Ū can be shown to
be exact in the limit N ! 1 [6]. Thus, the problem of
finding all FPs of the O(N) model: @tŪt(�̄) = 0 in the
limit N ! 1 boils down to solving the LPA FP equation
on Ū(�̄) having dropped the last term in Eq.(5). This
has been done in detail in several papers [7, 25]. The
result is the following: In a generic dimension d < 4
and apart from the gaussian FP, there is only one FP
which is the usual Wilson-Fisher FP. The exception to
the rule above occurs in the dimensions dc = 2+2/n with
n = 1, 2, · · · where there is also a line of FPs starting at
the gaussian FP and terminating at the Bardeen-Moshe-
Bander (BMB) FP[26–29].

We now show that the procedure described above is
too restrictive and eliminates some FPs that are physi-
cally relevant. The point is that the last term in Eq.(5),
which represents the contribution of the longitudinal

mode, is negligible compared to the term proportional
to N � 1, the contribution of the transverse modes, only
if it reaches a finite limit when N ! 1. We show that
this is not necessarily the case and that the last term
in Eq.(5) can also be of order N and can thus be non
negligible.
It is convenient for what follows to change variables.

Following ref. [30], we define: V (µ) = U(�)+ (���)2/2
with µ = �2 and � � � = �2�V 0(µ). As above, it is
convenient to rescale µ and V (µ): µ̄ = µ/N , V̄ = V/N .
In terms of these quantities, the FP equation for V̄ (µ̄)
following from Eq.(5) reads

0 = 1� d V̄ + (d� 2)µ̄V̄ 0 + 4µ̄V̄ 02 � 2V̄ 0 � 4

N
µ̄ V̄ 00. (6)

This equation has two remarkable features. First, it is
much simpler than Eq.(5) because the nonlinearity comes
only from the (V̄ 0)2 term. Second, its physical interpre-
taion is simple: it is the LPA equation obtained from
the Wilson-Polchinski version of the NPRG [31–34]: V
and U are therefore related by the Legendre transform
Eq.(2). Eq.(6) has therefore also been widely studied in
the literature. The usual large N analysis performed in
this version of the NPRG consists here again in neglect-
ing the last term in Eq.(6) because it is suppressed by a
factor 1/N [35]. Under the assumption that this term is
indeed negligible in the large N limit, the resulting equa-
tion becomes independent of N and an exact (implicit)
solution of this equation is known (see Supplemental Ma-
terial). However, at large N , it is clear on Eq.(6) that we
have to deal with singular perturbation theory since the
small parameter used for the expansion, that is, 1/N , is
in front of the term of highest derivative, that is, V̄ 00. In
this case, it is well-known that in general the term pro-
portional to V̄ 00 cannot be neglected and that singular
solutions can exist at ✏ = 1/N ! 0 [36]. Put it di↵er-
ently, at finite but large values of N , a boundary layer
can exist for a particular value of the argument µ̄ that
becomes a singularity at N = 1. We now show that this
is what indeed occurs.
It is particularly simple to understand on Eq.(6) why

and how at N = 1 a solution exhibiting an isolated
singularity for a given µ̄ = µ̄0 can exist. Consider the
intervals on the left and on the right of µ̄0. On these
intervals, V̄ (µ̄) is regular by definition. This implies that
the last term in Eq.(6) can safely be neglected at large
N on these two intervals. To get a singularity where
this term can play a role in (6) at N = 1, it is neces-
sary that the solutions on the left and on the right of µ̄0

match at µ̄0 but with two di↵erent slopes. It is trivial to
build such a solution: Take on the right of µ̄0 the Wilson-
Fisher solution of Eq.(6) (without the last term) and on
the left V̄ (µ̄) = µ̄/2 which is a trivial solution of (6).
The matching point is then trivially found numerically
as the intersection of these two curves (see Fig.3 in the
Supplemental Material). Then, at finite N , the boundary
layer around µ̄0 where the left and right solutions match
smoothly (but abruptly) can be easily computed at lead-

We have to deal with singular perturbation in general.

LPA FP eq.

Rescaling in N

Transformation of the variables

(U,�) ! (V,�)

<latexit sha1_base64="YyBaV8/QhS2wMBDSioBS7IEugcs="></latexit>

1/N A small parameter
<latexit sha1_base64="Z0fKUFW19tkqY/NFSobkHpTZc8Y="></latexit>

V̄ 00 The highest order derivative



Usual large-N limit in the 
functional RG

• In generic dimensions , it has three solutions: 
Gaussian FP (G),  Wilson Fisher FP (WF) and linear FP                    　
　　　　　. 

• In dimensions  with odd integer ,  
term is marginal around G and a line of FPs starting 
from G and terminating at BMB FP appears.

2 < d < 4

d = 2 + 2/p p > 0 (φ2)p+1
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At criticality, the model is self-similar and the RG flow reaches a FP if it is expressed in terms of dimensionless
quantities. We proceed as usual by rescaling fields and coordinates according to x̃ = kx, �̃(x̃) = v�1/2

d k(2�d)/2Z̄1/2
k �(x)

and Ũk(⇢̃) = v�1
d k�dUk(⇢). The LPA flow of the potential Ũk(�̃) is given by Eq. (4) and becomes in the large N limit

the one given by Eq. (5) under the assumption that the last term in Eq. (4) is negligible. In this limit, it can be
shown that if this last term is indeed negligible then the LPA equation becomes exact in the large N limit because the
coupling between Ũk(�̃) and the other functions such as Zk(⇢) and Yk(⇢) is subleading. The usual field and potential
rescalings is given in Eq. (6) and the flow thus reads:

@tŪt(�̄) = �d Ūt +
1

2
(d� 2)�̄ Ū 0

t +

✓
1� 1

N

◆
�̄

�̄+ Ū 0
t

+
1

N

1

1 + Ū 00
t

. (18)

As shown in Eq. (13), the potential Uk=⇤ is the bare potential given by the hamiltonian of the model. This yields
the boundary condition at t = 0 necessary to solve unambiguously Eq. (18). In the large N limit and again under
the hypothesis that the last term is negligible in this limit, it becomes Eq. (8).

B. Wilson-Polchinski approach

Another formulation of the NPRG is the approach à la Wilson-Polchinski (W-P) based on running effective Hamil-
tonians instead of running Gibbs free energies [45], see Appendix A for details. What is important for what follows
is that, as pointed out by Morris [46], there is an exact mapping between LPAs in W-P and in Ellwanger-Morris-
Wetterich versions of the RG when the cutoff in Eq. (10) is used (the LPA is universal in the W-P version, that is, is
independent of the function Rk). Here we denote the potential part of the effective Hamiltonian in W-P approach by
V (%) and Ṽ (%̃) its dimensionless analog which is a function of the dimensionless field %̃. Then, the mapping is given
by:

Ṽ (%̃) = Ũ(⇢̃) + (�̃i � �̃i)
2/2 and �̃i � �̃i = ��̃iṼ

0(%̃) = ��̃iŨ
0(⇢̃) (19)

with %̃ = �̃i�̃i/2 [46]. We then perform the same rescaling as in Eq. (6):

%̄ =
%̃

N
, V̄t(%̄) =

Ṽt(%̃)

N
. (20)

With these changes of variables, the LPA FP equation (18) in Ellwanger-Morris-Wetterich version of the RG is
transformed into the LPA in the W-P parametrization [45, 47, 48] which is given by:

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00. (21)

IV. THE LARGE N LIMIT REVISITED: NEW FIXED POINTS, BOUNDARY LAYERS AND CUSPS

We show below that the usual large N approaches described in section II are too restrictive and miss several FPs
that are relevant to the multicritical physics of O(N) models. As already explained in Section II, the problem is that
some FP potentials that are physically relevant show singularities when N = 1. It turns out that the analysis of
these singularities is by far simpler in W-P than in Ellwanger-Morris-Wetterich version of the RG and we therefore
switch to the former from now on.

A. The usual large N limit in the functional RG

The LPA FP equation on the potential is given in the Ellwanger-Morris-Wetterich version of the RG by Eq. (7)
when the regulator of Eq. (10) is used. It becomes Eq. (21) in the W-P version of the RG.

In the usual large N approach, the FP potential Ū(⇢̄) is assumed to be smooth for all values of the field when
N ! 1. Thus, the last term in Eq. (7) is neglected since its prefactor is of order 1/N . The resulting equation has
been shown to be exact in this limit [12] which means that although the free energy �k[�] involves terms other than
Uk(⇢), see Eq. (15), the exact flow equation for the potential at N = 1 is given by Eq. (8). Its analogue in the W-P
version of the NPRG is also obtained by neglecting the term with a 1/N prefactor but this time in Eq. (21). It reads:

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0. (22)
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FIG. 3: d = 3 and N = 1: (Left) Some tricritical potentials of the A(⌧) FPs along the BMB line (blue) together
with the Wilson-Fisher FP potential (red) that are solutions of Eq. (21). The gaussian FP G corresponds to the
horizontal line and all FP potentials along the BMB line are continuous deformations of G. The BMB FP is the

end-point of the BMB line (purple): It involves a linear part for % 2 [0, %0] and shows a discontinuity in its second
derivative at %̄0, see the right panel. All these potentials are given by Eq. (23) (in the Wilson-Polchinski version of

the LPA flow). (Right) Derivatives of the A(⌧) FP potentials of the BMB line (blue). The BMB FP potential
(purple) shows a discontinuity in its second derivative at %̄ = %̄0.

Apart from the gaussian FP G, this equation is known to have two smooth solutions defined for all %̄ � 0 in
generic dimensions 2 < d < 4: the WF FP solution, whose analytic expression has been derived in [49] and the high
temperature FP V̄ (%̄) = %̄ [50].

Notice that the dimensions dc = 2 + 2/p with p 2 N⇤ are exceptional. In these dimensions, the ('2)p+1 term
becomes marginal and at N = 1, takes place the BMB phenomenon that has no counterpart in generic dimensions
[51–53]. For example, for p = 2, that is, d = 3, there exists a line of tricritical FPs at N = 1 called the BMB line of
FPs. The complete set of regular solutions of Eq. (22) in d = 3 are given by the following implicit expression [54]:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (23)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an integration

constant. They consist in (i) the gaussian FP G obtained for ⌧ = 0 for which V̄ 0(%̄) = 0, (ii) a set of well-defined
solutions V̄ (%̄) indexed by ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which correspond to the BMB line of FPs and denoted here by
A(⌧), with the BMB FP obtained at ⌧ = ⌧ BMB being the endpoint of the line [51, 53–56], (iii) an isolated solution
associated with

p
2/⌧ = 0 which corresponds to the Wilson-Fisher FP (an analytic continuation is needed when

V 0 < 0). Notice that for ⌧ > ⌧ BMB the solutions of Eq. (23) are not defined on the whole interval %̄ 2 [0,1[ [54].
The potentials of the A(⌧) FPs with ⌧ < ⌧ BMB are regular for all values of the field. Approaching ⌧BMB, the FP
potential approaches a limiting shape which shows a singularity: It is made of a linear part V̄ (%̄) = %̄ starting at
%̄ = 0 up to the point %̄0 where this straight line crosses the nontrivial part of the potential, see Fig. 3. The BMB FP
potential is obtained as this limiting shape. Notice that the linear part of the BMB FP potential existing for %̄ < %̄0,
see Figs. 3 can be replaced by a smooth analytic continuation of the other part of the potential, that is, the part
corresponding to %̄ > %̄0, without having any physical consequence. This can be most easily realized by going to the
Ellwanger-Morris-Wetterich version of the flow where this linear part is entirely mapped onto the point �̄ = 0 [54].
The RG flow is given in Appendix C where the BMB line together with the WF FP are provided.

B. Explicit construction of the new FPs SWF2 and SG3 at N = 1 in d > 3 in the Wilson-Polchinski approach

The problem with the usual large N approach is particularly clear on Eqs. (21) and (22): It is well known from
singular perturbation theory that when the small expansion-parameter, that is, 1/N in our case, multiplies the term
of highest derivative, that is, V̄ 00, it is not legitimate in general to neglect this term in the limit where the small
parameter goes to zero [57]. Thus, the limit N ! 1 has to be taken with care because a boundary layer that becomes
an isolated singularity in the large N limit can exist, see below. One possibility to derive the correct large N limit



Tricritical FP solutions in  
and at   in LPA

d = 3

N = ∞

•             …Gaussian (G) FP 

•                                        …  FPs on the BMB line 

•                   …No FP defined for all 

•                 …Wilson-Fisher (WF) FP
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In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:
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where %̄+
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V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.
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It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
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values of ⌧ , that is, values for which a FP on the BMB line
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
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exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
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FIG. 3: d = 3 and N = 1: (Left) Some tricritical potentials of the A(⌧) FPs along the BMB line (blue) together
with the Wilson-Fisher FP potential (red) that are solutions of Eq. (21). The gaussian FP G corresponds to the
horizontal line and all FP potentials along the BMB line are continuous deformations of G. The BMB FP is the

end-point of the BMB line (purple): It involves a linear part for % 2 [0, %0] and shows a discontinuity in its second
derivative at %̄0, see the right panel. All these potentials are given by Eq. (23) (in the Wilson-Polchinski version of

the LPA flow). (Right) Derivatives of the A(⌧) FP potentials of the BMB line (blue). The BMB FP potential
(purple) shows a discontinuity in its second derivative at %̄ = %̄0.

Apart from the gaussian FP G, this equation is known to have two smooth solutions defined for all %̄ � 0 in
generic dimensions 2 < d < 4: the WF FP solution, whose analytic expression has been derived in [49] and the high
temperature FP V̄ (%̄) = %̄ [50].

Notice that the dimensions dc = 2 + 2/p with p 2 N⇤ are exceptional. In these dimensions, the ('2)p+1 term
becomes marginal and at N = 1, takes place the BMB phenomenon that has no counterpart in generic dimensions
[51–53]. For example, for p = 2, that is, d = 3, there exists a line of tricritical FPs at N = 1 called the BMB line of
FPs. The complete set of regular solutions of Eq. (22) in d = 3 are given by the following implicit expression [54]:
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where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an integration

constant. They consist in (i) the gaussian FP G obtained for ⌧ = 0 for which V̄ 0(%̄) = 0, (ii) a set of well-defined
solutions V̄ (%̄) indexed by ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which correspond to the BMB line of FPs and denoted here by
A(⌧), with the BMB FP obtained at ⌧ = ⌧ BMB being the endpoint of the line [51, 53–56], (iii) an isolated solution
associated with

p
2/⌧ = 0 which corresponds to the Wilson-Fisher FP (an analytic continuation is needed when

V 0 < 0). Notice that for ⌧ > ⌧ BMB the solutions of Eq. (23) are not defined on the whole interval %̄ 2 [0,1[ [54].
The potentials of the A(⌧) FPs with ⌧ < ⌧ BMB are regular for all values of the field. Approaching ⌧BMB, the FP
potential approaches a limiting shape which shows a singularity: It is made of a linear part V̄ (%̄) = %̄ starting at
%̄ = 0 up to the point %̄0 where this straight line crosses the nontrivial part of the potential, see Fig. 3. The BMB FP
potential is obtained as this limiting shape. Notice that the linear part of the BMB FP potential existing for %̄ < %̄0,
see Figs. 3 can be replaced by a smooth analytic continuation of the other part of the potential, that is, the part
corresponding to %̄ > %̄0, without having any physical consequence. This can be most easily realized by going to the
Ellwanger-Morris-Wetterich version of the flow where this linear part is entirely mapped onto the point �̄ = 0 [54].
The RG flow is given in Appendix C where the BMB line together with the WF FP are provided.

B. Explicit construction of the new FPs SWF2 and SG3 at N = 1 in d > 3 in the Wilson-Polchinski approach

The problem with the usual large N approach is particularly clear on Eqs. (21) and (22): It is well known from
singular perturbation theory that when the small expansion-parameter, that is, 1/N in our case, multiplies the term
of highest derivative, that is, V̄ 00, it is not legitimate in general to neglect this term in the limit where the small
parameter goes to zero [57]. Thus, the limit N ! 1 has to be taken with care because a boundary layer that becomes
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ϱ̄ = μ̄/2
G FP
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and plotted in Fig. 2 in d = 3.2 along with the trivial solution V̄ (µ̄) = µ̄/2. As explained in the letter, we can identify
µ̄0 as the intersection of the two curves as shown in Fig. (3). In the same way, we can construct C2 in d = 3.5, 3.9
and 3.99 as shown in Fig. 4.

0 1 2 3 4
m

0.5

1.0

1.5

2.0
V@mD

0 1 2 3 4
m

0.30

0.35

0.40

0.45
V@mD
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Let us now describe the detail of the boundary layer analysis of Eq. (6). We assume that V̄ 0(µ̄) remains of order 1
and changes its value from V̄ 0(µ̄�

0 ) = 1/2, for the trivial solution V̄ (µ̄) = µ̄/2, to V̄ 0(µ̄+
0 ) = �0.0794, for the WF FP

solution. This occurs across the thin boundary layer located at µ̄0, whose width is of order 1/N so that V̄ 00 scales as
N . Inside this boundary layer, we introduce a scaled coordinate µ̃ = N(µ̄� µ̄0). Then, starting from Eq. (6), we can
write down a di↵erential equation which is valid inside this boundary layer at the leading order in 1/N as

0 = 1� d V̄ (µ̄0) + (d� 2)µ̄0V̄
0 + 4µ̄0V̄

02 � 2V̄ 0 � 4µ̄0 V̄
00, (1)

where µ̄ in µ̄V̄ 00(µ), µ̄V̄ 0(µ) and �d V̄ (µ) has been replaced by µ̄0. The primes stand for derivatives with respect to
the scaled variable µ̃. This di↵erential equation has a solution,

V 0(µ̃) = V1 � V2 tanh(V2µ̃), (2)

where we have defined V1 = 1/4 + V 0(µ+
0 )/2 and V2 = 1/4� V 0(µ+

0 )/2. This boundary layer solution smoothly (but
abruptly) connects the two values V̄ 0(µ̄�

0 ) = 1/2 and V̄ 0(µ̄+
0 ) = �0.0794 across the boundary layer, as expected.

V̄ (µ̄) = µ̄/2
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0 = 1� d V̄ (µ̄0) + (d� 2)µ̄0V̄
0 + 4µ̄0V̄

02 � 2V̄ 0 � 4µ̄0 V̄
00, (1)

where µ̄ in µ̄V̄ 00(µ), µ̄V̄ 0(µ) and �d V̄ (µ) has been replaced by µ̄0. The primes stand for derivatives with respect to
the scaled variable µ̃. This di↵erential equation has a solution,

V 0(µ̃) = V1 � V2 tanh(V2µ̃), (2)

where we have defined V1 = 1/4 + V 0(µ+
0 )/2 and V2 = 1/4� V 0(µ+

0 )/2. This boundary layer solution smoothly (but
abruptly) connects the two values V̄ 0(µ̄�
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Let us now describe the detail of the boundary layer analysis of Eq. (6). We assume that V̄ 0(µ̄) remains of order 1
and changes its value from V̄ 0(µ̄�

0 ) = 1/2, for the trivial solution V̄ (µ̄) = µ̄/2, to V̄ 0(µ̄+
0 ) = �0.0794, for the WF FP

solution. This occurs across the thin boundary layer located at µ̄0, whose width is of order 1/N so that V̄ 00 scales as
N . Inside this boundary layer, we introduce a scaled coordinate µ̃ = N(µ̄� µ̄0). Then, starting from Eq. (6), we can
write down a di↵erential equation which is valid inside this boundary layer at the leading order in 1/N as

0 = 1� d V̄ (µ̄0) + (d� 2)µ̄0V̄
0 + 4µ̄0V̄

02 � 2V̄ 0 � 4µ̄0 V̄
00, (1)

where µ̄ in µ̄V̄ 00(µ), µ̄V̄ 0(µ) and �d V̄ (µ) has been replaced by µ̄0. The primes stand for derivatives with respect to
the scaled variable µ̃. This di↵erential equation has a solution,

V 0(µ̃) = V1 � V2 tanh(V2µ̃), (2)

where we have defined V1 = 1/4 + V 0(µ+
0 )/2 and V2 = 1/4� V 0(µ+

0 )/2. This boundary layer solution smoothly (but
abruptly) connects the two values V̄ 0(µ̄�

0 ) = 1/2 and V̄ 0(µ̄+
0 ) = �0.0794 across the boundary layer, as expected.

1/N

• The boundary layer solution near the cusp is given as

At finite N, the boundary layer matches smoothly 
(but abruptly) the two different slopes      and       
on the right and left of the cusp.

Scaled variable around a cusp
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FIG. S1. The FP C2 of Eq. (6) in d = 3.2 at N = 1. It is shown as a solid line and is made of two parts that match at
µ̄0 = 0.694. The part on the right of µ̄0 is identical to the WF FP.
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FIG. S2. Left: The C2 FP of Eq. (6) in d = 3.5 (red), d = 3.9 (blue) and d = 3.99 (orange) at N = 1. For µ̄ > µ̄0, it coincides
with the WF FP solution and thus becomes flat when d ! 4�. Right: The C3 FP of Eq. (6) in d = 3.2 for various values of
N . It becomes flat for µ̄ > 2/d in the large N limit. At N = 1, the location of the cusp in both potentials goes to 1/2 when
d ! 4� and the two FPs coincide.

The exact (implicit) solution of Eq. (S.1) which corresponds to the Wilson-Fisher (WF) FP at N = 1 is known
[35] and plotted in Fig. S1 in d = 3.2 along with the trivial solution V̄ (µ̄) = µ̄/2. As explained in the letter, we can
identify µ̄0 as the intersection of the two curves as shown in Fig. S1.

Let us now describe the detail of the boundary layer analysis of Eq. (6). We assume that V̄ 0(µ̄) remains of order 1
and changes its value from V̄ 0(µ̄�

0 ) = 1/2, for the trivial solution V̄ (µ̄) = µ̄/2, to V̄ 0(µ̄+
0 ) = �0.0794, for the WF FP

solution. This occurs across the thin boundary layer located at µ̄0, whose width is of order 1/N so that V̄ 00 scales as
N . Inside this boundary layer, we introduce a scaled coordinate µ̃ = N(µ̄� µ̄0) and denote the slope V̄ 0(µ̄) by F (µ̃).
Then, starting from Eq. (6), we can write down a di↵erential equation which is valid inside this boundary layer at
the leading order in 1/N as

0 = 1� d V̄ (µ̄0) + (d� 2)µ̄0F + 4µ̄0F
2 � 2F � 4µ̄0 F

0, (S.1)

where µ̄ in �d V̄ (µ̄), µ̄F , µ̄F 2 and µ̄F 0 has been replaced by µ̄0. The primes in Eq. (S.1) stand for derivatives with
respect to the scaled variable µ̃. This di↵erential equation has a solution,

F (µ̃) = V1 � V2 tanh(V2µ̃), (S.2)

where we have defined V1 = 1/4 + V̄ 0(µ̄+
0 )/2 and V2 = 1/4� V̄ 0(µ̄+

0 )/2. This boundary layer solution smoothly (but
abruptly) connects the two values V̄ 0(µ̄�

0 ) = 1/2 and V̄ 0(µ̄+
0 ) = �0.0794 across the boundary layer, as expected.

F (µ̃) = V̄ 0(µ̄)

Primes stand for derivatives with respect to µ̃

V1 = 1/4 + V̄ 0(µ̄+
0 )/2
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Correspondence between 
the two parametrization

2

of the theory: �⇤ ⇠ H, and the Gibbs free energy � of
the original model when k = 0: �k=0 = �. The exact
RG flow equation of �k gives the evolution of �k with k
between these two limiting cases and reads [13]:

@t�k[�] =
1

2
Tr[@tRk(q

2)(�(2)
k [q,�q;�] +Rk(q))

�1] (3)

where t = log(k/⇤), Tr stands for an integral over q and

a trace over group indices and �(2)
k [q,�q;�] is the matrix

of the Fourier transforms of �2�k/��i(x)��j(y).
In most cases, Eq.(3) cannot be solved exactly and

approximations are mandatory. The best known approx-
imation consists in expanding �k in powers of r�i and to
truncate the expansion at a given finite order[8, 16–24].
The approximation at lowest order is dubbed the local
potential approximation (LPA). For the O(N) model it
consists in approximating �k by:

�k[�] =

Z
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where, by definition, � =
p
�i�i. Fixed points are found

only for dimensionless quantities and thus we define the

dimensionless field ⇢̃ and potential Ũk as �̃ = v
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2
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2�d
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and Ũk(�̃) = v�1
d k�dUk (�) with v�1

d = 2d�1d⇡d/2�(d2 ).

The LPA flow of Ũk reads:

@tŨt(�̃) = �d Ũt(�̃) +
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(d� 2)�̃ Ũ 0

t(�̃)+

(N � 1)
�̃

�̃+ Ũ 0
t(�̃)

+
1

1 + Ũ 00
t (�̃)
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(5)

The usual large N limit of the LPA flow [7] is obtained by
(i) replacing the factor N�1 by N , (ii) dropping the last
term in Eq.(5) because it is assumed to be sub-leading
compared to the term proportional to N , (iii) rescaling
the field by a factor

p
N and the potential by a factor N :

�̄ = �̃/
p
N , Ū = Ũ/N . As a consequence of these three

steps, the explicit dependence in N of the LPA flow of
Ū(�̄) disappears in the large N limit. The crucial point
is that the resulting LPA equation on Ū can be shown to
be exact in the limit N ! 1 [6]. Thus, the problem of
finding all FPs of the O(N) model: @tŪt(�̄) = 0 in the
limit N ! 1 boils down to solving the LPA FP equation
on Ū(�̄) having dropped the last term in Eq.(5). This
has been done in detail in several papers [7, 25]. The
result is the following: In a generic dimension d < 4
and apart from the gaussian FP, there is only one FP
which is the usual Wilson-Fisher FP. The exception to
the rule above occurs in the dimensions dc = 2+2/n with
n = 1, 2, · · · where there is also a line of FPs starting at
the gaussian FP and terminating at the Bardeen-Moshe-
Bander (BMB) FP[26–29].

We now show that the procedure described above is
too restrictive and eliminates some FPs that are physi-
cally relevant. The point is that the last term in Eq.(5),
which represents the contribution of the longitudinal

mode, is negligible compared to the term proportional
to N � 1, the contribution of the transverse modes, only
if it reaches a finite limit when N ! 1. We show that
this is not necessarily the case and that the last term
in Eq.(5) can also be of order N and can thus be non
negligible.
It is convenient for what follows to change variables.

Following ref. [30], we define: V (µ) = U(�)+ (���)2/2
with µ = �2 and � � � = �2�V 0(µ). As above, it is
convenient to rescale µ and V (µ): µ̄ = µ/N , V̄ = V/N .
In terms of these quantities, the FP equation for V̄ (µ̄)
following from Eq.(5) reads

0 = 1� d V̄ + (d� 2)µ̄V̄ 0 + 4µ̄V̄ 02 � 2V̄ 0 � 4

N
µ̄ V̄ 00. (6)

This equation has two remarkable features. First, it is
much simpler than Eq.(5) because the nonlinearity comes
only from the (V̄ 0)2 term. Second, its physical interpre-
taion is simple: it is the LPA equation obtained from
the Wilson-Polchinski version of the NPRG [31–34]: V
and U are therefore related by the Legendre transform
Eq.(2). Eq.(6) has therefore also been widely studied in
the literature. The usual large N analysis performed in
this version of the NPRG consists here again in neglect-
ing the last term in Eq.(6) because it is suppressed by a
factor 1/N [35]. Under the assumption that this term is
indeed negligible in the large N limit, the resulting equa-
tion becomes independent of N and an exact (implicit)
solution of this equation is known (see Supplemental Ma-
terial). However, at large N , it is clear on Eq.(6) that we
have to deal with singular perturbation theory since the
small parameter used for the expansion, that is, 1/N , is
in front of the term of highest derivative, that is, V̄ 00. In
this case, it is well-known that in general the term pro-
portional to V̄ 00 cannot be neglected and that singular
solutions can exist at ✏ = 1/N ! 0 [36]. Put it di↵er-
ently, at finite but large values of N , a boundary layer
can exist for a particular value of the argument µ̄ that
becomes a singularity at N = 1. We now show that this
is what indeed occurs.
It is particularly simple to understand on Eq.(6) why

and how at N = 1 a solution exhibiting an isolated
singularity for a given µ̄ = µ̄0 can exist. Consider the
intervals on the left and on the right of µ̄0. On these
intervals, V̄ (µ̄) is regular by definition. This implies that
the last term in Eq.(6) can safely be neglected at large
N on these two intervals. To get a singularity where
this term can play a role in (6) at N = 1, it is neces-
sary that the solutions on the left and on the right of µ̄0

match at µ̄0 but with two di↵erent slopes. It is trivial to
build such a solution: Take on the right of µ̄0 the Wilson-
Fisher solution of Eq.(6) (without the last term) and on
the left V̄ (µ̄) = µ̄/2 which is a trivial solution of (6).
The matching point is then trivially found numerically
as the intersection of these two curves (see Fig.3 in the
Supplemental Material). Then, at finite N , the boundary
layer around µ̄0 where the left and right solutions match
smoothly (but abruptly) can be easily computed at lead-
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the literature. The usual large N analysis performed in
this version of the NPRG consists here again in neglect-
ing the last term in Eq.(6) because it is suppressed by a
factor 1/N [35]. Under the assumption that this term is
indeed negligible in the large N limit, the resulting equa-
tion becomes independent of N and an exact (implicit)
solution of this equation is known (see Supplemental Ma-
terial). However, at large N , it is clear on Eq.(6) that we
have to deal with singular perturbation theory since the
small parameter used for the expansion, that is, 1/N , is
in front of the term of highest derivative, that is, V̄ 00. In
this case, it is well-known that in general the term pro-
portional to V̄ 00 cannot be neglected and that singular
solutions can exist at ✏ = 1/N ! 0 [36]. Put it di↵er-
ently, at finite but large values of N , a boundary layer
can exist for a particular value of the argument µ̄ that
becomes a singularity at N = 1. We now show that this
is what indeed occurs.
It is particularly simple to understand on Eq.(6) why

and how at N = 1 a solution exhibiting an isolated
singularity for a given µ̄ = µ̄0 can exist. Consider the
intervals on the left and on the right of µ̄0. On these
intervals, V̄ (µ̄) is regular by definition. This implies that
the last term in Eq.(6) can safely be neglected at large
N on these two intervals. To get a singularity where
this term can play a role in (6) at N = 1, it is neces-
sary that the solutions on the left and on the right of µ̄0

match at µ̄0 but with two di↵erent slopes. It is trivial to
build such a solution: Take on the right of µ̄0 the Wilson-
Fisher solution of Eq.(6) (without the last term) and on
the left V̄ (µ̄) = µ̄/2 which is a trivial solution of (6).
The matching point is then trivially found numerically
as the intersection of these two curves (see Fig.3 in the
Supplemental Material). Then, at finite N , the boundary
layer around µ̄0 where the left and right solutions match
smoothly (but abruptly) can be easily computed at lead-
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of the theory: �⇤ ⇠ H, and the Gibbs free energy � of
the original model when k = 0: �k=0 = �. The exact
RG flow equation of �k gives the evolution of �k with k
between these two limiting cases and reads [13]:

@t�k[�] =
1

2
Tr[@tRk(q

2)(�(2)
k [q,�q;�] +Rk(q))

�1] (3)

where t = log(k/⇤), Tr stands for an integral over q and

a trace over group indices and �(2)
k [q,�q;�] is the matrix

of the Fourier transforms of �2�k/��i(x)��j(y).
In most cases, Eq.(3) cannot be solved exactly and

approximations are mandatory. The best known approx-
imation consists in expanding �k in powers of r�i and to
truncate the expansion at a given finite order[8, 16–24].
The approximation at lowest order is dubbed the local
potential approximation (LPA). For the O(N) model it
consists in approximating �k by:

�k[�] =

Z

x

✓
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2
(r�i)

2 + Uk(�)

◆
. (4)

where, by definition, � =
p
�i�i. Fixed points are found

only for dimensionless quantities and thus we define the

dimensionless field ⇢̃ and potential Ũk as �̃ = v
� 1

2
d k

2�d
2 �

and Ũk(�̃) = v�1
d k�dUk (�) with v�1

d = 2d�1d⇡d/2�(d2 ).

The LPA flow of Ũk reads:
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(N � 1)
�̃

�̃+ Ũ 0
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1

1 + Ũ 00
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The usual large N limit of the LPA flow [7] is obtained by
(i) replacing the factor N�1 by N , (ii) dropping the last
term in Eq.(5) because it is assumed to be sub-leading
compared to the term proportional to N , (iii) rescaling
the field by a factor

p
N and the potential by a factor N :

�̄ = �̃/
p
N , Ū = Ũ/N . As a consequence of these three

steps, the explicit dependence in N of the LPA flow of
Ū(�̄) disappears in the large N limit. The crucial point
is that the resulting LPA equation on Ū can be shown to
be exact in the limit N ! 1 [6]. Thus, the problem of
finding all FPs of the O(N) model: @tŪt(�̄) = 0 in the
limit N ! 1 boils down to solving the LPA FP equation
on Ū(�̄) having dropped the last term in Eq.(5). This
has been done in detail in several papers [7, 25]. The
result is the following: In a generic dimension d < 4
and apart from the gaussian FP, there is only one FP
which is the usual Wilson-Fisher FP. The exception to
the rule above occurs in the dimensions dc = 2+2/n with
n = 1, 2, · · · where there is also a line of FPs starting at
the gaussian FP and terminating at the Bardeen-Moshe-
Bander (BMB) FP[26–29].

We now show that the procedure described above is
too restrictive and eliminates some FPs that are physi-
cally relevant. The point is that the last term in Eq.(5),
which represents the contribution of the longitudinal

mode, is negligible compared to the term proportional
to N � 1, the contribution of the transverse modes, only
if it reaches a finite limit when N ! 1. We show that
this is not necessarily the case and that the last term
in Eq.(5) can also be of order N and can thus be non
negligible.
It is convenient for what follows to change variables.

Following ref. [30], we define: V (µ) = U(�)+ (���)2/2
with µ = �2 and � � � = �2�V 0(µ). As above, it is
convenient to rescale µ and V (µ): µ̄ = µ/N , V̄ = V/N .
In terms of these quantities, the FP equation for V̄ (µ̄)
following from Eq.(5) reads

0 = 1� d V̄ + (d� 2)µ̄V̄ 0 + 4µ̄V̄ 02 � 2V̄ 0 � 4

N
µ̄ V̄ 00. (6)

This equation has two remarkable features. First, it is
much simpler than Eq.(5) because the nonlinearity comes
only from the (V̄ 0)2 term. Second, its physical interpre-
taion is simple: it is the LPA equation obtained from
the Wilson-Polchinski version of the NPRG [31–34]: V
and U are therefore related by the Legendre transform
Eq.(2). Eq.(6) has therefore also been widely studied in
the literature. The usual large N analysis performed in
this version of the NPRG consists here again in neglect-
ing the last term in Eq.(6) because it is suppressed by a
factor 1/N [35]. Under the assumption that this term is
indeed negligible in the large N limit, the resulting equa-
tion becomes independent of N and an exact (implicit)
solution of this equation is known (see Supplemental Ma-
terial). However, at large N , it is clear on Eq.(6) that we
have to deal with singular perturbation theory since the
small parameter used for the expansion, that is, 1/N , is
in front of the term of highest derivative, that is, V̄ 00. In
this case, it is well-known that in general the term pro-
portional to V̄ 00 cannot be neglected and that singular
solutions can exist at ✏ = 1/N ! 0 [36]. Put it di↵er-
ently, at finite but large values of N , a boundary layer
can exist for a particular value of the argument µ̄ that
becomes a singularity at N = 1. We now show that this
is what indeed occurs.
It is particularly simple to understand on Eq.(6) why

and how at N = 1 a solution exhibiting an isolated
singularity for a given µ̄ = µ̄0 can exist. Consider the
intervals on the left and on the right of µ̄0. On these
intervals, V̄ (µ̄) is regular by definition. This implies that
the last term in Eq.(6) can safely be neglected at large
N on these two intervals. To get a singularity where
this term can play a role in (6) at N = 1, it is neces-
sary that the solutions on the left and on the right of µ̄0

match at µ̄0 but with two di↵erent slopes. It is trivial to
build such a solution: Take on the right of µ̄0 the Wilson-
Fisher solution of Eq.(6) (without the last term) and on
the left V̄ (µ̄) = µ̄/2 which is a trivial solution of (6).
The matching point is then trivially found numerically
as the intersection of these two curves (see Fig.3 in the
Supplemental Material). Then, at finite N , the boundary
layer around µ̄0 where the left and right solutions match
smoothly (but abruptly) can be easily computed at lead-
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FIG. 1. Ū 0(�̄) for the C2 FP of Eq. (5) for di↵erent values of
N and the Wilson-Fisher FP for N = 100 in d = 3.2.

of the slope V̄ 0 with respect to µ̃ are of order 1 around
µ̃ = 0 (see Section I of the Supplemental Material for a
complete description of this procedure). We find that the
thickness of the boundary layer is of order 1/N in terms
of the variable µ̄, which implies that V̄ 00 is of order N
within the layer. This is the reason why the last term
in Eq. (6) is not negligible within the layer. This means
that the FP solution V̄ (µ̄) does not scale uniformly in µ̄
as 1/N – which is assumed in the usual large N analysis
– but inhomogenously depending on whether µ̄ is located
inside or outside the boundary layer. It is important to
notice that due to this singularity, the usual argument
about the exactness of the LPA in the limit N ! 1 is
not valid anymore. We have therefore studied the sta-
bility of the result obtained above by including the next
term of the derivative expansion that consists in replac-
ing (r�i)2 by Zk(�)(r�i)2 + Yk(�)(�ir�i)2 in Eq.(4):
all conclusions drawn with the LPA alone are still valid.

Once the boundary layer has been computed from
Eq.(6), it is particularly interesting to transform the FP
solution V̄ (µ̄) back to Ū(�̄). For reason that will be clear
in the following, we call C2 this FP. In d = 3.2, C2 exists
and we show it in Fig.1. Three interesting features ap-
pear on this figure. First, a limiting shape of C2 clearly
shows up when N is increased, which is consistent with
the existence of a singular FP at N = 1. Second, for the
large values of �̄, that is, �̄ > 0.965, C2 coincides with
the WF FP whereas it does not at smaller field. Third,
between �̄ = 0+ and �̄ ' 0.965, the slope of Ū 0(�̄) is
very close to �1, which makes the last term of Eq.(5)
very large. We have checked (i) that this term scales ex-
actly as N at large N , and (ii) that, using the relation
� = � + Ū 0(�̄), the interval � 2 [0+, 0.965] is exactly
mapped onto the (very narrow) boundary layer around
µ̄0 in the (µ̄, V̄ ) parametrization. Fourth, at finite N ,
Ū(�̄) is a regular function of �̄2 and thus Ū 0(�̄ = 0) = 0.
Then, Ū 0(�̄) shows an almost vertical slope at large N
at �̄ = 0 such that Ū 0(�̄ = 0) becomes undefined when
N ! 1. We have checked using again � = �+Ū 0(�̄) that
the (very narrow) interval where Ū 0(�̄) varies abruptly
around the origin is exactly mapped onto the interval

where V̄ (µ̄) = µ̄/2, that is, [0, µ̄0].
A first natural question is to wonder whether C2 is the

only singular FP of the O(N) model at N = 1. We have
found that C2 appears just below d = 4 at N = 1 and
that, as expected, it does not appear alone but together
with another FP that we call C3. The indices 2 and 3
in C2 and C3 refer to their degree of instability, that is,
the number of relevant directions of the RG flow in their
neighborhood. These FPs can appear together because
their degree of instability di↵er by one unit. The FP C3 is
trivially found from Eq.(6) at large N . It is made of two
parts: For µ̄ 2 [0, 2/d], V̄ (µ̄) = µ̄/2 and for µ̄ 2 [2/d,1[,
V̄ (µ̄) = 1/d. At finite N , these two parts also connect
across a boundary layer of width 1/N . When d ! 4�, the
WF part of C2 at N = 1 corresponding to µ̄ > µ̄0 = 1/2
flattens and tends to the value 1/4. The potentials of C2

and C3 become identical in this limit which confirms that
they coincide in this limit and that they appear together
below d = 4 (see the Supplemental Material where the
potentials are plotted).

A second natural question is to wonder whether the
FPs found above are nothing but a curiosity occuring at
N = 1 with no impact on the physics at finite N , in
much the same way as the BMB FP. We have checked
that this is not at all the case. The FPs C2 and C3 found
above at N = 1 are indeed the limits of FPs found at
finite N [37]. These FPs are regular for all values of the
field. They play a prominent role for the multicritical
physics of the O(N) model at least for su�ciently large
values of N . In particular, their presence solves a para-
dox: It is well-known that the perturbative tricritical FP
T2, found perturbatively for all N in d = 3 � ✏, is not
found at N = 1 for d < 3. This paradox is solved when
realizing that T2 appears for any N at d = 3� where
it is gaussian, and, when N is large enough, disappears
when decreasing d by colliding with C3 on a line dc(N)
in the (N, d)-plane whose equation is dc(N) ' 3� 3.6/N
[37–39]. Thus, the interval in d where it exists shrinks
to 0 when N increases. We notice that both C2 and C3

exist at finite and large N in d = 3 and it would be very
interesting to find models whose multicritical behavior is
described by these FPs.

A third natural question is whether what we have
found is specific to the O(N) model or is likely to be
generic. We have pragmatically investigated the O(N)⌦
O(2) model along the same line as above to answer this
question.

The order parameter of the O(N)⌦O(2) model is the
N ⇥ 2 matrix � = ('1,'2) [40–42] and the Hamiltonian
is the sum of the usual kinetic terms and of the potential
U(⇢, ⌧) where ⇢ and ⌧ are the two O(N)⌦O(2) indepen-
dent invariants: ⇢ = '2

1 + '2
2 and ⌧ = (('2

1 � '2
2)

2/4 +
('1 ·'2)2). The LPA ansatz is identical to Eq. (4) up to
the replacement Uk(�) by Uk(⇢, ⌧). The standard largeN
limit predicts that, aside from the O(2N)-symmetric FP,
two nontrivial FPs exist in 2 < d < 4: the chiral fixed
point C+, which describes the second order transition
between the ordered and the disordered phases, and the
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I. MATCHING PROCEDURE AND BOUNDARY LAYER ANALYSIS FOR C2

FIG. S1. The FP C2 of Eq. (6) in d = 3.2 at N = 1. It is shown as a solid line and is made of two parts that match at
µ̄0 = 0.694. The part on the right of µ̄0 is identical to the WF FP.
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FIG. S2. Left: The C2 FP of Eq. (6) in d = 3.5 (red), d = 3.9 (blue) and d = 3.99 (orange) at N = 1. For µ̄ > µ̄0, it coincides
with the WF FP solution and thus becomes flat when d ! 4�. Right: The C3 FP of Eq. (6) in d = 3.2 for various values of
N . It becomes flat for µ̄ > 2/d in the large N limit. At N = 1, the location of the cusp in both potentials goes to 1/2 when
d ! 4� and the two FPs coincide.

The exact (implicit) solution of Eq. (S.1) which corresponds to the Wilson-Fisher (WF) FP at N = 1 is known
[35] and plotted in Fig. S1 in d = 3.2 along with the trivial solution V̄ (µ̄) = µ̄/2. As explained in the letter, we can
identify µ̄0 as the intersection of the two curves as shown in Fig. S1.

Let us now describe the detail of the boundary layer analysis of Eq. (6). We assume that V̄ 0(µ̄) remains of order 1
and changes its value from V̄ 0(µ̄�

0 ) = 1/2, for the trivial solution V̄ (µ̄) = µ̄/2, to V̄ 0(µ̄+
0 ) = �0.0794, for the WF FP

solution. This occurs across the thin boundary layer located at µ̄0, whose width is of order 1/N so that V̄ 00 scales as
N . Inside this boundary layer, we introduce a scaled coordinate µ̃ = N(µ̄� µ̄0) and denote the slope V̄ 0(µ̄) by F (µ̃).
Then, starting from Eq. (6), we can write down a di↵erential equation which is valid inside this boundary layer at
the leading order in 1/N as

0 = 1� d V̄ (µ̄0) + (d� 2)µ̄0F + 4µ̄0F
2 � 2F � 4µ̄0 F

0, (S.1)

where µ̄ in �d V̄ (µ̄), µ̄F , µ̄F 2 and µ̄F 0 has been replaced by µ̄0. The primes in Eq. (S.1) stand for derivatives with
respect to the scaled variable µ̃. This di↵erential equation has a solution,

F (µ̃) = V1 � V2 tanh(V2µ̃), (S.2)

where we have defined V1 = 1/4 + V̄ 0(µ̄+
0 )/2 and V2 = 1/4� V̄ 0(µ̄+

0 )/2. This boundary layer solution smoothly (but
abruptly) connects the two values V̄ 0(µ̄�

0 ) = 1/2 and V̄ 0(µ̄+
0 ) = �0.0794 across the boundary layer, as expected.

C3 d=3.2
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identify µ̄0 as the intersection of the two curves as shown in Fig. S1.
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where µ̄ in �d V̄ (µ̄), µ̄F , µ̄F 2 and µ̄F 0 has been replaced by µ̄0. The primes in Eq. (S.1) stand for derivatives with
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where we have defined V1 = 1/4 + V̄ 0(µ̄+
0 )/2 and V2 = 1/4� V̄ 0(µ̄+

0 )/2. This boundary layer solution smoothly (but
abruptly) connects the two values V̄ 0(µ̄�

0 ) = 1/2 and V̄ 0(µ̄+
0 ) = �0.0794 across the boundary layer, as expected.

N = 1
d=3.5

d=3.9
d=3.99

Wilson-Polchinski framework

• C2 is the only singular FP of  models at ??O(N) N = ∞

C2



　　and     collide and 
vanish

Finite-N fixed point 
structure

　We found two nonperturbative fixed points  
　 (two-unstable) and　（three-unstable),                                    
which do not coincide with G at any d.                  　　　            　

N = Nc(d)

　　と    が衝突し消滅

C2 C3

LPA, DE2

C2

　　and     collide and 
vanish

The two lines meet  
at S=(d=2.8,N=19) 



The line  
• We can fit this line as   
Pisarski (1982 PRL) and Osborn-Stergiou (2018 JHEP) 
studied φ6 theory perturbatively (with                    
expansion) and showed that   can exist for          

  which agrees with our numerical fit within numerical 
uncertainty. 

• The perturbative calculation  does not describe the 
nonperturbative FP    far from the line  very 
precisely. 

Nc(d) = 3.6/(3 − d)

T2

C3 N = Nc(d)

N = Nc(d)

N  NPT
c (d) =

36

⇡2(3� d)
' 3.65

(3� d)

✏ = 3� d



The first double-valued 
structure

• Starting from P, we follow　　around a path around the 
point S clockwise. After full rotation it becomes       .　

• Anticlockwise path…        vanishes at 　　　　　and it 
remains complex all along the dashed path. It becomes 
real at 　　　　　and comes back as      . 

C2

C2

N = Nc(d)

After two full rotations we go back to



Two fates of depending on 
the path followed

S. YABUNAKA, C. FLEMING, AND B. DELAMOTTE PHYSICAL REVIEW E 106, 054105 (2022)

FIG. 15. Two paths that travel below (shown in red) and above
(shown in black) S. The FP A2 is followed in the (d, N ) plane
starting from Q in d = 2.99. On the path above S, A2 vanishes
by colliding with Ã3 on the line N = Nc(d ). On the path below
S, A2 exists everywhere but becomes indistinguishable with SWF2

when it is away from the d = 3 axis, and finally becomes cuspy
when N → ∞.

found at N = ∞. For a path that travels below S, A2 displays
a clear boundary layer when d < dS and N > NS and we may
then call this FP SWF2: It becomes cuspy when N → ∞. In
this latter case it is not found in the usual large-N analysis that
eliminates by construction these kinds of FPs. Thus, in both
cases, no trace of a tricritical FP at N = ∞ can be found in
the usual large-N approach.

VII. CONCLUSION

We have solved in this article an old paradox of the O(N)
models: How can it be that a perturbative tricritical fixed
point exists for all N in dimension d = 3 − ε whereas no
tricritical FP is found at N = ∞ in d < 3? It turns out that
the solution to this paradox is incredibly intricate: It requires
no less than the existence of four new fixed points, SWF2, Ã3,
SG3 and SÃ4. These FPs (i) never coincide with the Gaussian
FP whatever d and N , (ii) appear by pairs when d is decreased
from two nontrivial lines N ′

c(d ) and N ′
c,S′ (d ) and collide with

other FPs on two other nontrivial lines Nc(d ) and Nc,S′ (d ),
see Fig. 12, (iii) are singular at N = ∞ except for Ã3, and
(iv) are bivalued in the (d, N ) plane (but for SÃ4), that is,
A2 and SWF2 (respectively, Ã3 and SG3) are interchanged
when they are followed along paths traveling around the point
S (respectively, S′); see Figs. 14 and 11.

Several lessons can be drawn from this study.
First, the tricritical behavior of the O(N ) models was

believed to be fully captured by the massless (ϕ2)3 and there-
fore to become nontrivial only below d = 3. We find on the
contrary that SWF2 which is a twice unstable FP—possibly
tricritical—exists and is highly nontrivial in d = 3 for N suf-
ficiently large, that is, at LPA, for N typically larger than 28;
see Fig. 13. This FP cannot be described by the perturbative
massless (ϕ2)3 theory and exists above d = 3 up to the curve
N ′

c(d ); see Fig. 12. Notice that barring miracles, the basin of

attraction of SWF2 cannot be empty. Since at finite N the
potential of SWF2 shows all the properties of a well-defined
theory, there should exist well-defined microscopic models
having a RG flow terminating at SWF2. Therefore, the long-
distance physics of these models should be driven by SWF2
and, as a result, the presence of this FP must change the phase
diagram of the O(N) models when it exists. This shows that
at least for sufficiently large values of N , the multicritical
behavior of the O(N) models is a priori nontrivial in d = 3.
Three other nontrivial FPs—SG3, Ã3 and SÃ4—also exist
in d = 3 and when they exist, they also change the phase
diagram of the O(N) models. The FP SÃ4 exists within the
range N ∈ [55, 72] at LPA, see Fig. 11. Momentarily omitting
the monodromy that requires changing the dimension, the FP
SG3 exists within the range N ∈ [55,∞[ and the FP Ã3 within
N ∈ [28, 72[. If we authorize dimensional changes, then the
nontrivial monodromy around the point S′ leads us to identify
SG3 and Ã3 below N = 55. This identification changes the
domain of existence of SG3 to the same as SWF2, that is
N ∈ [28,∞[. It would of course be extremely interesting to
confirm the existence of all these new FPs by other methods,
the conformal bootstrap in particular.

Second, neither of the nontrivial FPs found above bifurcate
from the Gaussian FP in any d . They therefore cannot be
found in the ε = 3 − d expansion. The same holds true for the
1/N expansion for SG3, SWF2, and SÃ4 because at N = ∞
their effective FP potential is singular—they show a cusp—
and therefore cannot be found in the usual N = ∞ analysis
and a fortiori in the standard 1/N expansion. The best that can
be done perturbatively in a combined ε = 3 − d and large-N
expansion is to find that the perturbative tricritical FP—called
A2 here—can exist only for εN ! 36/π2, that is, on the right
of the Nc(d ) line; see Eq. (28). A second FP, that we call here
Ã3, is in fact found perturbatively in a combined 1/N and ε
expansion, see Eq. (27), and it is found that it collapses with
A2 along the line Nc(d ) but within this approach it is difficult
to determine on which interval in d it exists. On the contrary,
using the crudest approximation of the NPRG flow equations,
that is, the LPA, we easily find the zoo of all new FPs and
the domains where they exist, not only at large N and small
ε but for all N and in all dimensions. Notice that whereas we
have checked the stability of our approximations as for the
existence of both the line Nc(d ) and of the point S at order
two of the derivative expansion, with moderate quantitative
changes compared to LPA, a full study at order two remains
to be done for all the other FPs and for the point S′.

Third, however complicated the above picture may seem—
network of new FPs, nontrivial monodromies—it is the
simplest one that is consistent with all known results: (i)
Perturbation theory in 1/N and ε makes doubtless that the
usual tricritical FP A2 ceases to exist for large N as a real-
valued FP above the critical line Nc(d ), (ii) therefore there
must exist another FP—called here Ã3—with which A2 col-
lides on this line, (iii) triviality implies that Ã3 does not
exist in dimensions d > 4 which implies that it collides with
another FP in d < 4 and thus does not exist in d = 4,4 (iv)

4The author in Ref. [61] also mentioned this consistency require-
ment.
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FIG. 6. d = 3.2 and Wilson-Polchinski version of the RG: Po-
tential of the FP SWF2 obtained by numerically integrating Eq. (21)
at N = 45 and 70 showing the boundary layer and the N = ∞ limit.
The regions I, II, and III correspond, respectively, to the trivial linear
solution V̄ (!̄) = !̄, the boundary layer, and the WF FP. Region II
shrinks to zero in the limit N → ∞.

triviality of the long distance physics of the O(N) model in
these dimensions.

D. The BMB phenomenon revisited: Explicit construction of
new FPs at N = ∞ in d = 3 in the Wilson-Polchinski approach

We have recalled in Sec. IV A that in d = 3 and N = ∞,
there exists a line of tricritical FPs, the BMB line; see Fig. 3. In
the present section, we show that from each of these FPs A(τ )
we can construct its singular counterpart SA(τ ) showing an
isolated singularity in the same way as SWF2 is the singular
counterpart of the WF FP and SG3 the singular counterpart
of the Gaussian FP G. We also show below that these FPs
at N = ∞ and d = 3 are also realized as limits of finite-N
nonperturbative multicritical FPs.

The strategy to build singular FP potentials at N = ∞ and
d = 3 from the potentials of the FPs of the BMB line is the
same as previously for SWF2 and SG3 up to the difference
that there is now an infinite number of regular FPs A(τ ) along
the BMB line and, thus, infinitely many singular FPs SA(τ )
built out of these regular FPs.

We first consider a regular tricritical FP A(τ ) on the BMB
line, see Fig. 3, and connect the linear solution V̄ (!̄) = !̄ with
this regular FP at a crossing point as shown in Fig. 7. In
much the same way as the regular FPs along the BMB line
can be obtained by continuous deformations of the Gaussian
FP, see Fig. 3, their singular counterparts can also be obtained
as continuous deformations of the BMB FP. This FP which
is the endpoint of the usual BMB line, also shows a linear
part at small !̄; see Fig. 3. Thus, the BMB FP plays a pivotal
role because it is at the same time the last point of the regular
BMB line and the first singular FP of the full BMB line which
is therefore made of a regular part, the usual BMB line, and of
a second part made of the singular FPs described above. The
BMB FP is thus “at the middle” of the entire BMB line.

V. NONPERTURBATIVE FIXED POINTS FOR ALL N
AND d—TRICRITICALITY OF THE O(N) MODELS

We have shown in the previous section that two singular
FPs, SWF2 and SG3, exist at N = ∞ for d ∈ [3, 4[ and that

FIG. 7. d = 3 and N = ∞: Construction of the singular counter-
part SA of a regular tricritical FP A of the BMB line. The potential
of A is the solution of Eq. (21) obtained with τ $ 0.1776 (shown in
red). The potential of SA is shown as a solid line made of two parts
that match at !̄0 $ 0.32. For !̄ > !̄0 it coincides with A(τ ) and for
!̄ < !̄0 it is V̄ (!̄) = !̄.

they are the limits when N → ∞ of FPs whose potentials
show a boundary layer at large N . We have also shown that it is
possible to construct singular FPs from the BMB line of FPs.
In the following sections we study their extensions at finite N
and show that they play an important role for the multicritical
physics of the O(N ) models, even in d = 3.

The following analysis starts at N large and the value of N
will be continuously lowered. An intricate homotopy structure
among these fixed points will eventually show up for moderate
values of N .

A. Perturbative tricritical and multicritical FPs
of the O(N) model

Before tackling with the nonperturbative multicritical FPs
that are the finite N counterparts of the singular FPs on the
BMB line, Sec. IV D, let us first recall the known perturbative
results about multicritical FPs of the O(N) model.

The phase transitions in the O(N) model can be either
continuous or discontinuous. For these models, when no sym-
metry breaking terms are included, first order transitions are
found only when terms of degree at least 6 in the fields are
considered. In coupling constant space, or equivalently within
a phase diagram, the boundary separating the first and sec-
ond order regions corresponds to specific continuous phase
transitions that are called tricritical. In absence of symmetry
breaking terms, the second order region requires fine tuning a
single relevant coupling, or equivalently phase diagram vari-
able, and it is then said to be a hyperspace of codimension one.
The tricritical region is at the boundary of this codimension
one hypersurface and it is then naturally of codimension two
and requires thus fixing two relevant couplings or equivalently
phase diagram variables. The tricritical universality class can
be studied perturbatively with the massless (ϕ2)3 theory which
is renormalizable for d ! 3. An ε = 3 − d expansion is there-
fore possible. For all finite values of N , the corresponding
perturbative tricritical FP, that we call A2, bifurcates from the
Gaussian FP G below d = 3. The index 2 refers to the number
of relevant eigendirections of the FP A2.
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3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
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values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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Supplemental Material

I. PLOT OF V̄
0 AND SINGULARITY OF THE BMB FP POTENTIAL

In Fig.1 of the main text, for ⌧ = ⌧BMB, V̄ (%̄) has a discontinuous curvature that is not very visible. We thus choose
to plot V̄ 0 as a function of %̄:

FIG. S1. Potentials V̄
0(%̄) of the tricritical FPs A(⌧) = {A(⌧), Ã(⌧)} of the BMB line (blue). The BMB FP is the endpoint

of the BMB line (purple). The second derivative V̄
00(%̄) of the potential of the BMB FP shows a discontinuity in its second

derivative at %̄ = %̄0.

II. PLOT OF ⌧ AS A FUNCTION OF ↵

We plot here the relation between ⌧ and ↵ as a visual means of understanding how the finite N FPs A2(↵) and
Ã3(↵) relate to the BMB line A(⌧)

�BMB
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A
˜
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FIG. S2. ⌧ on the BMB line at N = 1 as a function of ↵ = (d� 3)N within the LPA approximation of the NPRG formalism.
The two branches given by A and Ã give the limits when N ! 1 of the two FPs at finite but large N , namely A2(↵) and
Ã3(↵). Both branches meet at ↵ = ↵c = 3.375 and the upper branch Ã extends to the point (↵BMB, ⌧BMB) ' (0.51, 0.36)

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

G

BMB

d = 3� ↵/N
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Fixed point structure in the 
vicinity of d = 3, N = ∞

• The number of relevant directions around a FP is indicated with the subscript.
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d (α, N ), we find that Ã3(α) → Ã[τ2(α)] when N → ∞ as
expected from Eq. (26). The value of αc found from Eq. (26)
is αLPA

c = 27/8 = 3.375.
Notice that the LPA value of αc given above is not ex-

act. However, both the disappearance of A2 and the exact
value of αc can be obtained perturbatively. The four-loop
β function of the dimensionless (ϕ2)3 coupling g6 rescaled
according to g6 = g̃6/N2 can be expanded in the large-N limit
and has been shown to involve all the leading in N terms. It
reads [59,60]

Nβg̃6 = −2αg̃6 + 12g̃2
6 − π2g̃3

6/2 + O(1/N ), (27)

where α = εN as usual.1 From this β-function, valid at small
ε and large N , follows the existence of two FPs:

g̃∗
6,± = 12

π2
(1 ±

√
1 − π2α/36). (28)

Notice that at large N , the anomalous dimension is given by
η = g̃∗2

6 /(6N2) [59] and its contribution to βg̃6 is negligible
at this order. This justifies why we expect the LPA to be a
reasonable approximation at large N .

Clearly, g̃∗
6,− corresponds to A2 because it coincides with

the Gaussian FP for α = 0 and identifies with the usual per-
turbative tricritical FP. It exists up to α = αc = 36/π2 % 3.65
which is exact at leading order in 1/N .2 As for the second root
g̃∗

6,+, it clearly corresponds to Ã3 because it collides with g̃∗
6,−

at α = αc. It was however not clear from perturbation theory
whether g̃∗

6,+ was a spurious root, probably because it is not
Gaussian in d = 3. In particular, from Eq. (28), g̃∗

6,+ seems
to exist at large N in all dimensions larger than dc(N ) which
seemed doubtful, and is actually wrong as we show below.
Notice also that neither does Eq. (26) impose an upper bound
on τ which could suggest that α is unbounded from below,
that is, Ã3 exists in all dimensions larger than dc(N ). This is
due to the fact that Eq. (26) is obtained from an expansion
about '̄ = 1 which is insensitive to the singularity that occurs
at '̄ = 0 for τ ! τBMB. Since it is this singularity at small
field that prevents having a well-defined FP potential it is not
surprising that Eq. (26) cannot predict the existence and the
value of αBMB. The recourse to a functional analysis of the FP,
that is, of Eq. (23) is therefore mandatory.

We know from Eq. (23) that the BMB line has a finite
extension which means that there is a maximal value τBMB =
32/(3π )2 of the parameter τ that parameterizes the BMB line.
Using Eq. (26) and Fig. 9, we find that this upper bound on τ2
translates into a lower bound on α: αLPA

BMB % 0.51.
The exact value of αBMB can be derived from another

argument of the N = ∞, d = 3 analysis. We know that the
effective potentials of the FPs along the BMB line are all reg-
ular at small values of g̃6; see Fig. 3. It is only at the endpoint
of the regular part of the BMB line, that is, at the BMB FP
that the FP effective potential starts showing a singularity at
small fields. (We recall that the linear part of the potential in
the W-P version of the RG maps onto a single point in the

1This β function was computed at d = 3 within the large-N expan-
sion in Refs. [54,73].

2Notice that this value has been interpreted in Refs. [59,60] as the
radius of convergence of the ε = 3 − d expansion at large N .

FIG. 10. FPs existing at N = ∞ (left panel) and large N (right
panel) in d ! 3 (the Wilson-Fisher FP is not shown although it exists
everywhere). Right panel: Straight lines represent the leading order
of the critical lines d (α, N ) = 3 − α/N + O(1/N2) where two FPs
collapse. The horizontal line corresponds to α = 0, that is, d = 3.
In this dimension, A2 bifurcates from G and it exists for α ∈ [0, αc],
that is, dc(N ) < d < 3. At αc, A2 = Ã3 and beyond this value of α

these two FPs do no longer exist as real FPs. The FP Ã3 exists for
α ∈ [αBMB, αc]. At leading order in 1/N , Ã3 = SÃ4 for α = αBMB.
The FP SÃ4 collapses with SA3 for α = αc and thus, as Ã3, exists
for α ∈ [αBMB,αc]. The line dc(N ) corresponding to α = αc is rep-
resented as a dashed line with alternating colors: dark pink for the
line where SA3 = SÃ4 and blue for the line where A2 = Ã3. Notice
that these lines are only superimposed at leading order in N and
differ at finite N . The FP SA3 can be followed above d = 3 where
it is identical to SG3. Left panel: the full BMB line made of the
regular FPs A = {A, Ã} between the Gaussian and the BMB FPs
and of the singular FPs SÃ = {SA, SÃ} between the BMB and the
singular Gaussian SG FPs. This line, made of four parts, corresponds
to the limits when N → ∞ of A2 → A, Ã3 → Ã, SÃ4 → SÃ, and
SA3 → SA. The dashed lines between the right and left panels show
the limits of the remarkable FPs: The Gaussian FP G on the BMB
line is the limit of the Gaussian FP at finite N , the FP at the border of
the A and Ã domains, that is, where A = Ã is the limit of A2 = Ã3

along the line indexed by αc, the BMB FP is the limit of Ã3 = SÃ4

along the line indexed by αBMB, the FP where SA = SÃ is the limit
of SA3 = SÃ4 along the line indexed by αc and finally SG is the limit
of SA3 along the line indexed by α = 0.

Ellwanger-Morris-Wetterich version.) It has been shown that
this occurs at g̃∗

6,+ = 2 [25,26]. Using Eq. (28) we conclude
that the corresponding value of α is αBMB = 2 − π2 % 2.13.
Notice that whereas the LPA value of αc differs from the
exact value by about 10%—3.375 instead of 3.65—the LPA
value of αBMB is off by a factor 4. It can be shown that this
value improves significantly when going at order two of the
derivative expansion [62].

From our analysis of the BMB line made above, we know
that it is made of a regular part and of a singular part which
is nothing but a singular copy of the regular part; see Fig. 10.
From this point of view, the BMB FP is both the endpoint of
the regular part and the starting point of the singular one. The
fact that αBMB is the lower bound of the values of α on the
Ã branch of the BMB line, see Fig. 9, implies that for finite
N the FP Ã3 ceases to exist above the dimension dBMB(N ) =
3 − αBMB/N . As usual, it is expected that this occurs by the
collapse of Ã3 with another FP. The paradox is that there is
no candidate within the ε and 1/N expansions for this new
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The second double-valued 
structure

• This structure is consistent with the points (i)-(iii) 
and what we found for the BMB line near

.d = 3, N = ∞
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FIG. 11: Point S0 and the lines Nc,S(d)
h
A2 = Ã3

i
(violet diamonds), N 0

c,S0(d)
h
Ã3 = SÃ4

i
(green crosses) and

Nc,S0(d)
h
SA3 = SÃ4

i
(orange squares). Starting from P , SA3 is followed on a clockwise closed path travelling

around S0. When d > 3, SA3 and SG3 are one and the same FP. SA3 remains real all along the path but back to the
point P, it is Ã3. Following SA3 along a path travelling twice around S0 it comes back to SA3.

●

●

~~ ~~

FIG. 12: Left: The two curves Nc(d) and N 0
c(d) respectively defined by A2=Ã3 and SWF2=SG3 and the curve

3.6/(3� d). Nc(d) is calculated with the LPA (red circles) and at order 2 of the derivative expansion (blue squares).
Right: The four curves Nc (d) (A2=SG3, violet stars), N 0

c (d) (SWF2=SG3, lightblue stars), N 0
c,S0 (d) (SG3=SÃ4

green crosses) and Nc,S0(d) (SA3=SÃ4, orange crosses).

A. The first non trivial homotopy structure - The Ã3 and SA3 (or SG3) FPs

We have numerically found that by lowering the value of N , the lines Nc,S0(d) and N 0
c,S0(d) intersects at a point S0

with, at LPA, S0 = (dLPA
S0 ' 3.08, NLPA

S0 ' 55), see Fig. 11. Notice in particular that the critical lines where A2=Ã3

and SA3=SÃ4 split when N is decreased whereas they were almost superimposed at large N . This is expected as
the leading order of the boundary layer analysis only implies that the critical line on which SA3 collapses with SÃ4

converges to the critical line of A2 and Ã3 for sufficiently large N .
We may also notice that SÃ4 collides with Ã3 on N 0

c,S0(d) and with SA3 on Nc,S0(d) which implies that it ceases
to exist as a real valued FP below the point S0. However, since dLPA

S0 > 3, both Ã3 and SÃ4 exist as physical FPs in
d = 3 at this order of approximations on a finite range of values of N , between N = 55 and N = 72.

An interesting feature related to the existence of the point S0 is the existence a non trivial homotopy in the (N, d)
plane when SA3 is followed along a loop that travels around the point S0. This is a simple consequence of the topology
in parameter space of what is known as a "cusp bifurcation". Further details on this bifurcation and its relationship
with the RG and the point S0 are given in Appendix I. For now, it is sufficient to notice that along the clockwise path
shown in Fig. 11 and starting at the point P , SA3 remains real after coming back to P because along this path it
does not collide with any other FP. However, back at P , the potential of the FP is no longer the initial potential. It
becomes in fact the potential of Ã3 as can be checked by continuously decreasing d at fixed N from the point P down
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FP. This paradox, which uses only known exact results from
perturbation theory and the large-N limit at d = 3, is crucial
because it paves the way to the new cusped FPs described in
this work. Indeed, we know from our analysis at N = ∞ and
d = 3 that there exists new FPs: the SA(τ ) FPs. It is therefore
natural to assume, and we have checked it numerically, that
these FPs have also finite N extensions and that Ã3 collapses at
finite N with one of them. We call SÃ4 the four times unstable
FP that collapses with Ã3 at finite N , that is, which is such that
SÃ4 = Ã3 along the line dBMB(N ) = 3 − αBMB/N . Taking the
limit N → ∞, this last equality translates on the BMB line
into SA(τBMB) = A(τBMB) which is consistent with the fact
that the BMB FP is both the last point of the regular part of
the BMB line and the first of the singular part. This is similar
to what occurs for A2 that collapses with Ã3 along the line
dc(N ) = 3 − αc/N which corresponds at N = ∞ to A(τc) =
Ã(τc) with τc = τ (αc); see Fig. 9.

Since at large fields, that is, for #̄ > #̄0 in Fig. 7, the
potentials of the regular A(τ ) and singular SA(τ ) FPs are
identical, the relation (26) between α and τ holds also for
the SA(τ < τBMB) FPs at leading order and for sufficiently
large N . This implies that SÃ4(α) → SA[τ (α)] when it
is followed along the lines d (α, N ) = 3 − α/N . Thus, like
Ã3 that exists at large N on a finite interval of dimen-
sions corresponding to α ∈ [αc,αBMB], SÃ4 exists on a finite
interval of dimensions which, at large values of N , also cor-
responds to the interval of values α ∈ [αc,αBMB]. It must
therefore also collide with another FP for α = αc in the same
way as Ã3 collides with A2 on the line dc(N ) = d (αc, N ).
We call SA3 the FP that collapses with SÃ4 on the line
dc(N ). Similarly to SÃ4, the large-N limit of the SA3 FPs
are singular FPs of the BMB line: We call them SA(τ )
while we call SÃ(τ ) the limits of the SÃ4(α) FPs when
N → ∞ and d → 3. The set of singular FPs on the BMB
line is thus: {SA(τ )} = {SÃ(τ2)} ∪ {SA(τ1)} with SÃ4(α) →
SÃ(τ2) and SA3(α) → SA(τ1) which is the singular counter-
part of {A(τ )} = {Ã(τ2)} ∪ {A(τ1)} with Ã3(α) → Ã(τ2)
and A2(α) → A(τ1).

By numerically integrating at finite N the FP Eqs. (7) and
(21), we have confirmed the existence of all these FPs as well
as their respective limits when N → ∞ and d → 3. We have
in particular found that at finite and moderate values of N ,
the lines where the different FPs collapse by pairs deform and
no longer satisfy d = 3 − α∗/N with either α∗ = αc or α∗ =
αBMB. For a reason that will become clear in the following, we
call Nc,S (d ) the line where A2 = Ã3, N ′

c,S′ (d ) the line where
Ã3 = SÃ4, Nc,S′ (d ) the line where SA3 = SÃ4 and N ′

c,S (d )
the line where SWF2 = SG3. Notice that from the discus-
sion above Nc,S (d ) and N ′

c,S (d ) are asymptotically identical at
large N .

Finally, it is possible to follow SA3 by continuity above
d = 3. In the range d > 3, SA3 is the same as SG3. In other
words, it is equivalent to call it SG3 or SA3. By convention,
we choose to call this FP SG3 for d > 3 and SA3 for d < 3.

A summary of the critical lines for d < 3 as well as their
shapes is given in Figs. 10–12. Finally, let us emphasize that
the mere existence of the new FPs presented above necessarily
changes the phase diagram of the O(N) models because these
FPs, which must each have a finite basin of attraction, drive

FIG. 11. Point S′ and the lines Nc,S (d )[A2 = Ã3] (violet di-
amonds), N ′

c,S′ (d )[Ã3 = SÃ4](green crosses) and Nc,S′ (d )[SA3 =
SÃ4] (orange squares). Starting from P, SA3 is followed on a clock-
wise closed path traveling around S′. When d > 3, SA3 and SG3 are
one and the same FP. SA3 remains real all along the path but back
to the point P, it is Ã3. Following SA3 along a path traveling twice
around S′ it comes back to SA3.

the long-range physics of the systems described by coupling
constants in these basins of attraction.

VI. NONTRIVIAL HOMOTOPY STRUCTURES OF THE
MULTICRITICAL FIXED POINTS

We have highlighted in our previous large-N analysis the
existence of many new FPs and critical lines that were either
not known or fully acknowledged. However, at smaller values
of N , say N = 1, 2, 3, it is well known that all FPs have an
upper-critical dimension where they become Gaussian. This
is contrary to the nonperturbative FPs found above where Ã3
(respectively, SG3) collapses with SÃ4 (respectively, SWF2)
when the dimension is increased. How can these two situa-
tions be made compatible? We show in the following that the
answer lies in the existence of two special points of the (d, N )
plane that we call S and S′ where critical lines meet. We show
in detail below that these points have the interesting property
that two FP solutions are swapped when they are followed by
continuity in the (d, N ) plane along any path traveling around
S or S′.

Let us then first recall that at the LPA a FP potential Ū
is a solution of Eq. (18) [or equivalently of Eq. (21)]. As
such, it is a function of d and N : Ū = Ū (ρ̄, d, N ). Thus, these
FPs can be followed smoothly in the (d, N ) plane by varying
continuously these parameters. Notice that when either d or
N is varied, a FP can collide with another one for a given
value of these parameters and disappear. Beyond this value it
indeed does no longer exist as a physical FP but it still exists as
a complex solution to the FP equation. From a mathematical
point of view, it will be useful in the following to consider
these complex FPs.
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Summary
• We have solved an old paradox about  models at the 
price of finding a zoo of new FPs and their homotopy 
structures. 

• New multicritical FPs are found in  for , 
whereas the pertubative tricritical FP exists only below 

.  

• We generalized BMB phenomenon for finite-N cases, 
which turned out to be necessary to have a consistent 
picture.

O(N)

d = 3 N ≳ 28

d = 3


