Quark matter under rotation: fRG versus lattice results

Xu-Guang Huang
Fudan University, Shanghai

Workshop on Functional Renormalization Group January 07, 2024 @ Niigata University

Content

- Introduction
 Why rotation is interesting for quark matter study
- Rotational effect on chiral condensate Results from fRG study based on quark-meson model
- Rotational effects from lattice simulations
 Conflict with model studies
- Discussions

Introduction

Where rotating quark matter: Neutron stars

Isolated pulsars can have $\omega \sim 10^3 s^{-1}$

Neutron star mergers

Where rotating quark matter: Quark-gluon plasma

Where rotating quark matter: Quark-gluon plasma

From global angular momentum to vorticity to hyperon spin polarization

$$\frac{dN_{s}}{d\boldsymbol{p}} \sim e^{-(H_{0} - \boldsymbol{\omega} \cdot \boldsymbol{S})/T}$$

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} \sim \frac{\omega}{2T}$$

First measurement of Λ polarization by STAR@RHIC *

parity-violating decay of hyperons

In case of Λ 's decay, daughter proton preferentially decays in the direction of Λ 's spin (opposite for anti- Λ)

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha \mathbf{P}_{\Lambda} \cdot \mathbf{p}_{\mathbf{p}}^*)$$

 α : Λ decay parameter (α_{Λ} =0.732)

 P_{Λ} : Λ polarization

 p_p^* : proton momentum in Λ rest frame

 $\Lambda
ightarrow p + \pi^-$ (BR: 63.9%, c au ~7.9 cm)

(* First theoretical proposal: Liang and Wang 2004, later by Voloshin 2004)

Where rotating quark matter: Quark-gluon plasma

• More recent measurements: Ξ^- , Ω^- by STAR@RHIC, Λ by ALICE@LHC

			magnetic	
hyperon	decay mode	α_H	moment µ _H	spin
Λ (uds)	Λ→pπ- (BR: 63.9%)	0.732	-0.613	1/2
∃- (dss)	Ξ-→Λπ- (BR: 99.9%)	-0.401	-0.6507	1/2
Ω- (sss)	Ω-→ΛK- (BR: 67.8%)	0.0157	-2.02	3/2

• Λ at low energy by STAR@RHIC 2021, HADES@GSI 2021

(Deng-XGH 2016, Deng-XGH-Ma-Zhang 2020)

- The most vortical fluid": $\omega \sim 10^{20} - 10^{21} s^{-1}$
- Relativistic suppression at high energies

Effect of rotation: Comparison with magnetic field

Hints for possible rotation effect: comparison with B field

Spin:

Angular momentum

$$H_{ ext{spin}-\omega} = -oldsymbol{S} \cdot oldsymbol{\omega}$$

Rotation field

Orbital:

In magnetic field, Lorentz force:

$$\boldsymbol{F} = e(\dot{\boldsymbol{x}} \times \boldsymbol{B})$$

Larmor theorem: $eB \sim 2m\omega$

In rotating frame, Coriolis force:

$$F = 2m(\dot{x} \times \omega) + O(\omega^2)$$

Effect of rotation: Comparison with chemical potential

Hints for possible rotation effect: comparison with chemical potential

Rotation

For massless Dirac fermions —

$$P = \frac{7\pi^2}{180\beta^4} + \frac{(\omega/2)^2}{6\beta^2} + \frac{(\omega/2)^4}{12\pi^2}$$

Chemical potential

$$H = H_0 - \mu N$$

$$P = \frac{7\pi^2}{180\beta^4} + \frac{\mu^2}{6\beta^2} + \frac{\mu^4}{12\pi^2}$$

(Ambrus and Winstanley 2019; Palermo et al 2021)

QCD phase diagram

- Rotation affects chiral condensate and confinement?
- Rotation effects combined with finite B field, densities, ... ?

Can rotation affect chiral condensate?

Angular momentum polarization

Consider a scalar (or pseudoscalar) pair of fermions

- Thus in general, one expects that rotation tends to suppress σ, π, \dots
- Compare with magnetic catalysis (dimensional reduction)

Rotating fermions

- Let us consider fermions; bosons can be similarly discussed.
- Consider a rotating frame

$$\begin{cases} x' = x \cos \Omega t - y \sin \Omega t \\ y' = x \sin \Omega t + y \cos \Omega t \\ z' = z \\ t' = t \end{cases}$$

$$\begin{cases} x' = x \cos \Omega t - y \sin \Omega t \\ y' = x \sin \Omega t + y \cos \Omega t \\ z' = z \\ t' = t \end{cases}$$

$$g_{\mu\nu} = \begin{pmatrix} 1 - \Omega^2 r^2 \Omega y - \Omega x & 0 \\ \Omega y & -1 & 0 & 0 \\ -\Omega x & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Fermion field

$$S = \int d^4x \sqrt{-g} \bar{\psi} \left(i \gamma^{\mu} \nabla_{\mu} - m_0 \right) \psi \qquad \nabla_{\mu} = \partial_{\mu} + i \hat{Q} A_{\mu} + \Gamma_{\mu}$$

$$\nabla_{\mu} = \partial_{\mu} + i\,\hat{Q}A_{\mu} + \Gamma_{\mu}$$

$$H = \hat{Q}A_0 + m_0\beta + \boldsymbol{\alpha} \cdot \boldsymbol{\pi} - \boldsymbol{\Omega} \cdot (\mathbf{r} \times \boldsymbol{\pi} + \boldsymbol{\Sigma})$$

Rotating fermions

Uniformly rotating system must be finite

- Boundary conditions for Dirac fermions in a cylinder
 - Dirichlet B.C. (No)
 - MIT B.C. (Yes)

$$[i\gamma^{\mu}n_{\mu}(\theta) - 1]\psi\Big|_{r=R} = 0$$
 $j^{\mu}n_{\mu} = 0$ at $r = R$

No-flux B.C. (Yes)

$$\int d\theta \, \bar{\psi} \, \gamma^r \, \psi \Big|_{r=R} = 0$$

Minimum request for Hermiticity

Rotating fermions

Consider no-flux B.C.

- $p_t = p_{l,k}$ discretized by $J_l(p_{l,k}R) = 0$
- $E = (p_{l,k}^2 + p_z^2 + m^2)^{1/2} > \Omega |l + \frac{1}{2}|$
- Vacuum does not rotate
 (Vilenkin 1979, Ambrus-Winstanley 2015, Ebihara-Fukushima-Mameda 2016)

• To see uniform rotation effect, we need T, μ , B,

B: Chen etal 2015, Liu-Zahed 2017, Chen-Mameda-XGH 2019, Cao-He 2019, Tabatabaee etal 2021...

μ: XGH-Nishimura-Yamamoto 2017,Zhang-Hou-Liao 2018, Huang etal2018, Nishimura etal 2020,2021...

Figures drawn by K.Mameda

T: Jiang-Liao 2016, Chernodub-Gongyo 2017, Wang etal 2019, Luo etal 2020, Jiang 2021, ...

Take a four-fermion model

$$Z = \int \mathcal{D}[\bar{\psi}, \psi] \exp\left(i \int d^4 x \sqrt{-g} \mathcal{L}_{NJL}\right)$$

$$\mathcal{L}_{NJL} = \bar{\psi}(i\gamma^{\mu}\nabla_{\mu} - m_0)\psi + \frac{G}{2}[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma^5\boldsymbol{\tau}\psi)^2]$$

$$\nabla_{\mu} = \partial_{\mu} + i\hat{Q}A_{\mu} + \Gamma_{\mu}$$

Mean-field approximation

$$V_{\text{eff}} = \frac{1}{\beta V} \int d^4 x_E \left\{ \frac{\sigma^2 + \pi^2}{2G} - \sum_{\{\xi\}} \left[\frac{\varepsilon_{\{\xi\}}}{2} + \frac{1}{\beta} \ln(1 + e^{-\beta \varepsilon_{\{\xi\}}}) \right] \Psi_{\{\xi\}}^{\dagger} \Psi_{\{\xi\}} \right\}$$

 $\mathcal{E}_{\{\xi\}}$ and $\Psi_{\{\xi\}}$: Eigen-energy and eigen-wavefunction with quantum numbers $\{\xi\}$

Consider a simple case: massless, no pion modes, homogeneous

$$\varepsilon_{l,\pm} = \pm \sqrt{p_z^2 + p_t^2 + \sigma^2} - \Omega\left(l + \frac{1}{2}\right)$$

Ration

$$\varepsilon_{n,\pm} = \pm \sqrt{p_z^2 + \sigma^2 + 2nqB}$$

Magnetic field

Magnetic catalysis

Chiral condensate vs rotation and/or magnetic field

 $\sigma \left[\Lambda \right]$ **Rotational suppression** 0.3 0.2 Magnetic inhibition 0.1 $qB[\Lambda^2]$ $\Omega R \left[\times 10^{-3} \right]$

 $G > G_c$

(Chen-Fukushima-XGH-Mameda 2015)

Consider a simple case: massless, no pion modes, homogeneous

$$\varepsilon_{l,\pm} = \pm \sqrt{p_z^2 + p_t^2 + \sigma^2} - \Omega \left(l + \frac{1}{2} \right)$$

$$\varepsilon_{n,\pm} = \pm \sqrt{p_z^2 + \sigma^2 + 2nqB}$$
 Ration Magnetic field

Compare with finite-density case:

Sakai-Sugimoto model

(Freis-Rebhan-Schmitt 2010)

Quark-meson model

(Andersen-Tranberg 2012)

Many mean-field studies support that rotation suppresses chiral condensate

(Chernodub-Gongyo 2016)

(Chen-Li-Huang 2022)

- Purpose: beyond mean-field approximation ---- fRG approach
- Quark-meson model is perhaps the simplest model to consider

$$\mathcal{L} = \phi[-(-\partial_{\tau} + \Omega\hat{L}_z)^2 - \nabla^2]\phi + U(\phi) + \bar{q}[\gamma^0(\partial_{\tau} - \Omega\hat{J}_z) - i\gamma^i\partial_i + g(\sigma + i\vec{\pi} \cdot \vec{\tau}\gamma^5)]q$$

$$U(\phi) = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4 - c\sigma \qquad \text{with} \qquad \phi = (\sigma, \vec{\pi})$$

With Dirichlet B.C. for mesons and no-flux B.C. for quarks, solutions for Klein-Gordon eq. and Dirac eq.:

$$\phi = rac{1}{N_{l,i}^2} e^{-i(\varepsilon - \Omega l)t + il\theta + ip_z z} J_l(p_{l,i}r)$$

$$\begin{aligned} & \text{Gordon eq. and Dirac eq.:} \\ & \phi = \frac{1}{N_{l,i}^2} e^{-i(\varepsilon - \Omega l)t + il\theta + ip_z z} J_l(p_{l,i}r) \\ & \text{Discretized momenta } p_{l,i} \text{ and } \tilde{p}_{l,i} \\ & \text{aredetermined by B.C.s} \end{aligned} \qquad u_+ = \frac{e^{-i(\varepsilon - \Omega j) + ip_z z}}{\sqrt{\varepsilon + m}} \begin{pmatrix} (\varepsilon + m)\phi_l \\ 0 \\ p_z\phi_l \\ i\tilde{p}_{l,i}\phi_l \end{pmatrix}, \quad \text{with} \quad \phi_l = e^{il\theta}J_l(\tilde{p}_{l,i}r) \\ & \phi_l = e^{i(l+1)\theta}J_{l+1}(\tilde{p}_{l,i}r) \end{aligned}$$

The flow equation for effective action

Partition function with an IR regulator

$$Z_{k}[J] = \int D\chi e^{-S[\chi] + \int_{X} \chi(x)J(x) - \Delta S_{k}[\chi]}$$

regulator

$$\Delta S_k[\chi] = \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} \chi^*(q) R_k(q) \chi(q)$$

Legendre transformation:

$$\Gamma_k[\phi] = -W_k[J] + \int_x \phi(x)J(x) + \Delta S_k[\phi]$$

flow equation (Wetterich 1993)

$$\partial_k \Gamma_k = \frac{1}{2} \mathrm{tr}(G_{\phi,k} \partial_k R_{\phi,k}) - \mathrm{tr}(G_{q,k} \partial_k R_{q,k}) \quad \text{with coarse-graining regulators}$$

$$\begin{split} R_{\phi,k} &= (k^2 - p^2)\theta(k^2 - p^2) \\ \hat{R}_{q,k} &= -i\gamma^i \partial_i \bigg(\frac{k}{\sqrt{-\nabla^2}} - 1\bigg)\theta(k^2 + \nabla^2) \end{split}$$

The flow equation for effective action

Partition function with an IR regulator

$$Z_{k}[J] = \int D\chi e^{-S[\chi] + \int_{X} \chi(x)J(x) - \Delta S_{k}[\chi]}$$

regulator

$$\Delta S_k[\chi] = \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} \chi^*(q) R_k(q) \chi(q)$$

Legendre transformation:

$$\Gamma_k[\phi] = -W_k[J] + \int_{\mathcal{X}} \phi(x)J(x) + \Delta S_k[\phi]$$

flow equation (Wetterich 1993)

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{tr}(G_{\phi,k} \partial_k R_{\phi,k}) - \operatorname{tr}(G_{q,k} \partial_k R_{q,k}) \quad \text{with propagators}$$

$$\begin{split} \hat{G}_{\phi,k}^{-1} &= -(-\partial_{\tau} + \Omega \hat{L}_z)^2 - \nabla^2 + \hat{R}_{\phi,k} + \frac{\partial^2 U}{\partial \phi_i \partial \phi_j} \\ \\ \hat{G}_{q,k}^{-1} &= \gamma^0 (-\partial_{\tau} + \Omega \hat{J}_z) - \gamma^i \partial_i + \hat{R}_{q,k} + g \phi \end{split}$$

The flow equation for effective potential: Local potential approximation

 Solved using grid method with UV cutoff at 1 GeV; System size is 100/GeV, other parameters are fitted to non-rotating results

• Chiral condensate on T-Ω plane (Chen-Zhu-XGH 2023)

fRG calculation

Mean-field calculation

• No surprise: Ω tends to suppress chiral condensate

Lattice calculation of rotating QCD

Formulate rotating lattice

- Gluons and Wilson fermions (Angular momentum) (Yamamoto-Hirono 2013)
- Pure gluons (Polyakov loop) (Braguta et al 2021)
- We consider gluons and 2+1 flavor staggered fermions

Imaginary rotation: $\Omega
ightarrow -i\Omega_I$

No sign problem No causality constraint

Projective-plane B.C for x-y plane Periodic B.C. for t and z direction

We measure: (imaginary) angular momentum

Ji decomposition
$$\mathbf{J} = \mathbf{J}_G + \mathbf{s}_q + \mathbf{L}_q \qquad \begin{cases} \mathbf{J}_G = \sum_a \int d^3x \ \mathbf{r} \times (\mathbf{E}^a \times \mathbf{B}^a) \,, \\ \mathbf{s}_q = \int d^3x \ q^\dagger \frac{\mathbf{\Sigma}}{2} q, \end{cases} \qquad \qquad \text{Chiral vortical effect} \\ \mathbf{L}_q = \frac{1}{i} \int d^3x \ q^\dagger \mathbf{r} \times \mathbf{D} q. \end{cases}$$

Formulate rotating lattice

- Gluons and Wilson fermions (Angular momentum) (Yamamoto-Hirono 2013)
- Pure gluons (Polyakov loop) (Braguta et al 2021)
- We consider gluons and 2+1 flavor staggered fermions

Imaginary rotation: $\Omega
ightarrow -i\Omega_I$

No sign problem
No causality constraint

Projective-plane B.C for x-y plane Periodic B.C. for t and z direction

We measure: chiral condensate and Polyakov loop

$$\Delta_{l,s}(T,\Omega_I) = \frac{\langle \bar{\psi}_l \psi_l \rangle_{T,\Omega_I} - \frac{m_l}{m_s} \langle \bar{\psi}_s \psi_s \rangle_{T,0}}{\langle \bar{\psi}_l \psi_l \rangle_{0,0} - \frac{m_l}{m_s} \langle \bar{\psi}_s \psi_s \rangle_{0,0}}$$

$$L_{\rm ren} = \exp(-N_{\tau}c(\beta)a/2)L_{\rm bare}$$

$$L_{\text{bare}} = \left| \text{tr} \left[\sum_{\mathbf{n}} \prod_{\tau} U_{\tau}(\mathbf{n}, \tau) \right] \right| / 3N_x^3$$

Results of angular momentum

- Angular momentum
- J_G and L_q approximately $\propto r^2$, and s_q approximately independent of r, thus

$$\rho_J = \frac{1}{N_{taste}N_{r_{max}}}\sum_{n_x^2+n_y^2 < r_{max}^2} \frac{\langle J(n)\rangle}{a\Omega(a^{-1}r)^2}$$
 Moment of inertia

$$\xi_q = \frac{1}{4N_{r_{max}}} \sum_{n_x^2 + n_y^2 < r_{max}^2} \frac{\langle s_q(n) \rangle}{a\Omega}$$
 Quark spin susceptibility

Results for chiral condensate

Chiral condensate and chiral susceptibility

• Analytical continuation to real rotation $\Omega_I \to i\Omega$

Chiral condensate must be even function of Ω

Chiral condensate increase with real Ω !

Sharp conflict between effective models and lattice!

Recall e.g the fRG results for QM model

Results for Polyakov loop

Polyakov loop and its susceptibility: Real rotation catalyze quark confinement

- Pseudo-critical temperature decreases due to imaginary rotation
 Critical increases real
- Consistent with previous pure gluon simulation

(Braguta etal 2021)

Contradict with model studies, see next slides

Confinement under rotation

- It is not easy to intuitively imagine the rotational effect on confinement
- Argument based on hadron resonance gas (HRG) model

$$(m) = e^{m/T_H} \quad \blacksquare$$

$$\rho(m) = e^{m/T_H} \qquad \qquad Z = \int dm \, \rho(m) \, e^{-m/T} \qquad \qquad$$

Interpreted as deconf. T

diverges for $T > T_H$

$$p(T, \mu, \omega; \Lambda) = \sum_{m; M_i \leq \Lambda} p_m + \sum_{b; M_b \leq \Lambda} p_b$$

$$\frac{p}{p_{\text{SB}}}(T_c, \mu, \omega) = \gamma$$

$$p_{\rm SB} \equiv (N_{\rm c}^2 - 1) p_{\rm g} + N_{\rm c} N_{\rm f} (p_{\rm q} + p_{\bar{\rm q}})$$

Chosen to be indep. of rotation

$$\frac{p}{\mathrm{SB}}(T_{\mathrm{c}},\,\mu,\,\omega) = \gamma$$

(Fujimoto-Fukushima-Hidaka 2021)

Rotation favors deconfinement

Confinement under rotation

- It is not easy to intuitively imagine the rotational effect on confinement
- Argument based on Tolman-Ehrenfest temperature

$$T(\mathbf{x})\sqrt{g_{00}(\mathbf{x})} = T_0$$

$$g_{00} = 1 - \rho^2 \Omega^2$$

$$T(\rho) = \frac{T(0)}{\sqrt{1 - \rho^2 \Omega^2}}$$

(Chernodub 2020)

Rotation favors deconfinement

Confinement under rotation

- It is not easy to intuitively imagine the rotational effect on confinement
- Results based on holography

(Chen-Zhang-Li-Hou-Huang 2020)

Rotation favors deconfinement

Discussions

Is analytical continuation sensible?

- For unbounded system, imaginary rotation is always OK, but real rotation is not. So the analytical continuation is problematic.
- For finite system preserving causality, the analytical continuation is OK

Real rotation lattice simulation using Taylor expansion

(Yang-XGH 2023)

fRG with real and imaginary rotation

(Chen-Zhu-XGH 2023)

Vacuum does not rotate?

- Natural to expect that the perturbative vacuum does not rotate
- Is it true for QCD vacuum containing nontrivial gluon condensate?

Deconfinement temperature in presence of Caloron background

(Jiang 2023)

Bag constant may response to rotation and enhance the deconfinement temperature

(Mameda 2023)

Important to have other nonperturbative calculations

fRG for rotating QCD

Gluon propagator

$$G_{\hat{\mu}\hat{\nu}}(x,x') = \sum_{n} \sum_{l} \int \frac{p_t \mathrm{d}p_t \mathrm{d}p_z}{(2\pi)^2} \left[\frac{1}{p_l^2} \delta_{\hat{\mu}\hat{\nu}}^L + \left(\frac{1}{p_{l+1}^2} + \frac{1}{p_{l-1}^2}\right) \delta_{\hat{\mu}\hat{\nu}}^T + \left(\frac{1}{p_{l+1}^2} - \frac{1}{p_{l-1}^2}\right) S_{z\hat{\mu}\hat{\nu}} \right] \mathrm{e}^{i\omega_n \Delta \tau + il\Delta\theta + ip_z \Delta z} J_l(p_T r) J_l(p_T r')$$

3 vertex can be handled

4 vertex is difficult

Summary and outlooks

Summary and outlooks

• It is NOT understood how rotation modifies chiral and deconfinement phase transitions of QCD.

Outlooks:

- More lattice simulations for imaginary rotation
- Cross check torsion effect on chiral condensate and confinement on lattice (Yamamoto 2020)
- Complex Langevin method (Azuma-Morita-Yoshida 2023)
- fRG for rotating QCD
- More model studies
- •

Thank you!

Where rotating quark matter: Rotating nuclei

The Angular Momentum World of the Nucleus pairing complete fission collapse? spectroscopy, rotational continuum, chaos I+2 high-K isomers hyperband deformation termination backbending superdeformation Energy 158Er ħω 149 Gd 194Hg ¹⁹²Hg magnetic rotation identical Odd $\Delta I=4$ bifurcation pair gap reduced **Angular Momentum** moments of inertia

Rotation can reach $\omega \sim 10^{21} s^{-1}$