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Today’s talk

In the presence of a momentum cutoff, gauge symmetry is realized in a modified form.

The Batalin-Vilkovisky’s antifield formalism, the BV formalism, is appropriate to describe

the modifed gauge symmetry.

In the BV formalism, the quantum master equation (QME) guarantee the presence of the

modified gauge symmetry.

We consider gauge theory with fRG based on the Batalin-Vilkovisky’s antifield formalism.

The two key equations are the flow equation and quantum master equation (QME).

It will be explained:

• Two equations, the flow eq. and QME, are formally compatible;

• Two eqs. can be simultaneously solved to give a perturbative action;
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• Based on our perturbative results, we present a “gauge-consistent” fRG flows for QED

with chirally invariant four-fermi interactions. Remaining problems are pointed out.

Further points

We will find that:

• It is important to keep QME along the RG flow to realize gauge symmetry

— We introduce the wave function renormalzation to keep the canonical structure of

the Batalin and Vilkovisky formalism.

• QME is equivalent to BRST symmetry and its nilpotency.

— The nilpotency is necessary to realize the structure of the BRST algebra (cf.

Kugo-Ojima formalism).
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The anti-field formalism a la Batalin-Vilkovisky

For a classical gauge fixed action S0[ϕ] for a generic gauge theory, define an extended

action as

Scl[ϕ, ϕ
∗] ≡ S0[ϕ] + ϕ∗Aδϕ

A

• Here antifields ϕ∗
A are introduced as sources for the BRST transformations δϕA.

the canonical structure via the antibracket for any field variables X and Y , we define

(X,Y ) ≡ ∂rX

∂ϕA
∂lY

∂ϕ∗A
− ∂rX

∂ϕ∗A

∂lY

∂ϕA

(Scl, Scl) = 2(δS0 + ϕ∗Aδ
2ϕA)

Classical master equation (CME): (Scl, Scl) = 0 ⇔ action invariance and the nilpotency.
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Generalize the consideration for S[ϕ, ϕ∗] that defines a quantum system via the functional

integration over ϕ.

∫
Dϕ e−S[ϕ,ϕ

∗]

Under the BRST transformation of fields δϕA ≡ (ϕA, S) = ∂lS
∂ϕ∗

A
, the changes of the

action and the functional measure are summed up to the quantum master operator:

Σ[ϕ, ϕ∗] ≡ ∂rS

∂ϕA
∂lS

∂ϕ∗A
− ∂r

∂ϕA
δϕA =

1

2
(S, S)−∆S , ∆ ≡ (−)ϵA+1 ∂

r

∂ϕA
∂r

∂ϕ∗A

where ϵA ≡ ϵ(ϕA) is the Grassmann parity.

The system is BRST invariant quantum mechanically if the two contributions cancel:

Σ[ϕ, ϕ∗] = 0 . (QME)
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The quantum BRST transformation as

δQX ≡ (X,S)−∆X

We have two important algebraic identities without assuming QME:

δQΣ[ϕ, ϕ
∗] = 0 ,

δ2QX = (X,Σ[ϕ, ϕ∗]) .

The quantum BRST transformation is nilpotent if and only if QME holds.

Σ[ϕ, ϕ∗ = 0] = 0 is the WT identity.

— 2024.1.7-8 Functional Renormalization Group at Niigata 2024 — 7/37



Wilson action via path integral with a momentum cutoff Λ

ZΛ =

∫
[dϕ] e−SΛ[ϕ] , SΛ[ϕ] =

1

2

∫
p

∆−1
AB(p)

K(p/Λ)
ϕA(p)ϕB(−p) + SI,Λ[ϕ] .

1

1

0 x =

p
2

Λ2

K(x)

1

1

0

−K
′(x)

x =

p
2

Λ2

Polchinski eq., the flow equation t = lnΛ/µ

ṠI,Λ[ϕ] = ∂tSI,Λ[ϕ] =
1

2

∫
p

K̇(p/Λ) ·∆AB(p)
( ∂SI,Λ
∂ϕA(p)

∂SI,Λ
∂ϕB(−p)

− ∂2SI,Λ
∂ϕA(p)∂ϕB(−p)

)

From the shape of K̇(p/Λ), it is easy to understand that the momentum integration

on the r.h.s. is taken only around p2 ∼ Λ2 and it is finite. There is no infinity one might

expect in a FT calculation.
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QME for Wilson action and its flow

Appropriate to consider gauge symmetry in the functional renormalization group with BV

formalism.

ΣΛ[ϕ, ϕ
∗] ≡ ∂rSΛ

∂ϕA
K
∂lSΛ

∂ϕ∗A
− ∂r

∂ϕA
δϕA =

1

2
(SΛ, SΛ)K −∆KSΛ ,

∆K ≡ (−)ϵA+1K
∂r

∂ϕA
∂r

∂ϕ∗A
.

ΣΛ = 0 implies the presence of gauge symmetry.

Under the scale change, ΣΛ behaves as

Σ̇Λ =

[∫
p

K̇(p/Λ)∆AB(p)
(∂SI,Λ
∂ϕA

∂

∂ϕB
− 1

2

∂2

∂ϕA∂ϕB

)]
ΣΛ

Once ΣΛ = 0 at some scale, ΣΛ vanishes along the RG flow.
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Properties of Wilsonian and 1PI actions

Wilsonian action 1PI action
SΛ[ϕ, ϕ

∗] ΓΛ[Φ,Φ
∗]

Diagrams Connected 1PI
Gauge symmetry mod. WT id. mod. WT id.
RG flow eq. Polchinski eq. 1PI flow eq.

Two actions are related via a Legendre transformation.

ΓI,Λ[Φ,Φ
∗] = SI,Λ[ϕ, ϕ

∗] +
1

2
(Φ− ϕ)A∆̄−1

AB(Φ− ϕ)B

(Φ− ϕ)A = ∆̄AB∂
lSI,Λ
∂ϕB

= ∆̄AB∂
lΓI,Λ
∂ΦB

where ∆̄ ≡ (1−K)∆ = K̄∆ is the high momentum propagator that allows momentum

modes above the cutoff Λ to propagate.
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Legendre tr. of flow eq. for SI ⇒ 1PI flow eq. for ΓI t = lnΛ/µ

From now on, we drop the subscript Λ.

Γ̇I = −1

2
Str

(
˙̄∆∆̄−1

[
1 + ∆̄Γ

(2)
I

]−1
)

= −1

2
Str

(
∆̄−1 ˙̄∆∆̄−1

[
∆̄−1 + Γ

(2)
I

]−1
)

X

Γ̇I = −

1

2

•
⊗

represents ∆̄−1 ˙̄∆∆̄−1 = − d
dt(K̄(p/Λ))−1 ·∆−1 = −K̇K̄−2∆−1 .

• The full propagator [∆̄−1 + Γ
(2)
I ]−1 is shown as the arrowed line:

– Blobs on the line are vertices; small dots are for fields Φ and Φ∗.
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QME in terms of 1PI action

Rewrite the QME, Σ = (S, S)−∆S/2 = 0, in terms of 1PI action.

The Legendre tr. of QME gives the modified Ward-Takahashi id. 1(Ellwanger):

Σ =
1

2
(Γ,Γ)− Str

(
KΓ

(2)
I∗

[
1 + ∆̄Γ

(2)
I

]−1
)

= 0 ,

where

(
Γ
(2)
I∗

)A
B
=

∂l∂r

∂Φ∗
A∂Φ

B
ΓI ,

(
Γ
(2)
I

)
AB

=
∂l∂r

∂ΦA∂ΦB
ΓI .

The measure term is a one-loop structure with the same full propagator ∆̄−1 + Γ
(2)
I as

the flow eq. but with the different vertex KΓ
(2)
I ∆̄−1.

1We can show

∵ (S, S)K = (Γ,Γ), ∆SI = Tr

(
KΓ

(2)
I∗

[
1 + ∆̄Γ

(2)
I

]−1
)
.
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Simultaneous solutions to the mod. WT id. and the flow equation

Σ =
1

2
(Γ,Γ)− Str

(
KΓ

(2)
I∗

[
1 + ∆̄Γ

(2)
I

]−1
)

= 0

Γ̇I = −1

2
Str

(
˙̄∆∆̄−1

[
1 + ∆̄Γ

(2)
I

]−1
)

Construction of perturbative solutions for Yang-Mills (Igarashi, Itoh, Morris) and QED

(Igarashi, Itoh).

An important lesson: introduce the Z factors so that BV structure is intact.
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Perturbative compatibility of Flow eq. and QME

( Igarashi, KI and Morris (2019) for YM, Igarashi and KI (2020) for QED)

• Flow eq. and QME may be solved perturbatively.

— Of course, this is related to the known results on the perturbative renormalizability.

(cf. The PTP suppl. review)

• In the methods in the above papers, the Wilsonian as well as 1PI actions may be

constructed explicitly even in the presence of a finite cutoff.

• Though our result applies to YM as well, today we consider QED with the chiral

invariant 4-fermi interactions.
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Construct an action based on the BRST algebra

The quantum BRST transformation

δQX = (Q+Q− −∆)X

QΦA = (ΦA,Γ) =
∂lΓ

∂Φ∗
A

, Q−Φ∗
A = (Φ∗

A, S) = − ∂lΓ

∂ΦA

Q− is called the Kozsul-Tate operator that changes the anti-ghost number.

(Formalism developed by Fisch and Henneaux (1990) and others.)

G-parity gh # anti-gh # dimension

Aµ 0 0 0 1
C 1 1 0 1

Ψ, Ψ̄ 1 0 0 3/2
Ψ∗, Ψ̄∗ 0 -1 1 3/2
C̄ 1 -1 1 1
B 0 0 1 2
A∗
µ 1 -1 1 2

C̄∗ 0 0 0 2
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Expansion in terms of e : Γ = Γ0 + Γ1 + Γ2 + · · ·

The classical action Γcl = Γ0 + Γ1 + Γ2,cl,

Γ0 =

∫
x

[
1

2

{
(∂µAν)

2 − (∂ ·A)2
}
+ Ψ̄i/∂Ψ+

(
A∗
µ − i∂µC̄

)
∂µC +

1

2
ξB2+

(
C̄∗−i∂ ·A

)
B

]
,

Γ1 =

∫
x

[
−eΨ̄/AΨ− ieΨ∗ΨC + ieΨ̄Ψ̄∗C

]
,

Γ2,cl =

∫
x

[
GS
2Λ2

{(
Ψ̄Ψ

) (
Ψ̄Ψ

)
−
(
Ψ̄γ5Ψ

) (
Ψ̄γ5Ψ

)}
+
GV
2Λ2

{(
Ψ̄γµΨ

) (
Ψ̄γµΨ

)
+
(
Ψ̄γ5γµΨ

) (
Ψ̄γ5γµΨ

)}]
,

satisfies the Classical Master Equation (CME) up to O(e2),

(Γcl,Γcl) = 0 .

— 2024.1.7-8 Functional Renormalization Group at Niigata 2024 — 16/37



• “Str log-formula” for one-loop effective action

Γq =
1

2
Str log

(
∆̄−1 + Γ

(2)
I,cl

)
,

which satisfies the flow eq. at lowest order in coupling !

Γ
(2)
I,cl are field dependent and give rise the diagrams given below.

Contributions to Γq:

Aµ Aν

(a) ΓAA2,q

ψ̄ ψ ψ̄ ψ+
GS,V

(b) Γψ̄ψ2,q. The 2nd term turns out to be zero.

Figure 1: Contributions to Γ2,q. Interaction vertices consist of vertices and fields with no
external lines. Internal lines are IR-regularized propagators ∆̄.
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Aµ

ψ

ψ̄

(a)

Aµ

ψ

ψ̄

(b)

Figure 2: Contributions to Γ3,q. Interaction vertices consist of vertices and fields with no
external lines. Internal lines are IR-regularized propagators ∆̄.
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One-loop correction to gauge two-point function ΓAAq and the anomalous

dimention ηA

For the photon two-point functions,

Γ̇AAq = e2
∫
p,q

Tr

[ ˙̄K(q)

/q
/A(p)

K̄(p+ q)

(/p+ /q)
/A(p)

]
=

e2

2

∫
p

Aµ(−p)Ȧµν(p)Aν(p) .

By expanding Ȧµν(p) in the external momentum up to O(p2),

Ȧµν(p) = 2M2
Aδµν − ηA(p

2δµν − pµpν) + · · · ,
we find the photon mass term and the anomalous dimension as

M2
A = Λ2 · e

2

4π2

∫ ∞

0

du uK̄ ′(u)K̄(u) , ηA =
e2

6π2
.
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The Ward identity, Z1 = Z2, is modified in the presence of 4-fermi couplings

Aµ

ψ

ψ̄

(a)

Aµ

ψ

ψ̄

(b)

Figure 3: Contributions to Γ3,q. Interaction vertices consist of vertices and fields with no
external lines. Internal lines are IR-regularized propagators ∆̄.

For the running of e, the scale derivatives of the above one-loop diagarams to give

ηe =
1

2
ηA − 1

4π2
(GS − 4GV )

∫ ∞

0

du uK̄(u)
′
K̄(u) .
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where the anomalous dimensions η’s defined as

Z3,2 = 1− ηA,Ψ log(Λ/µ) ,

Ze = 1 + ηe log(Λ/µ) .

This implies that

ZeZ
1/2
3 ̸= 1 , or Z1 ̸= Z2 .
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QME

• The above obtained action Γ ≡ Γcl + Γq satisfies the QME

Σ =
1

2
(Γ,Γ)− Str

(
KΓ

(2)
I∗

[
1 + ∆̄Γ

(2)
I

]−1
)

= 0

up to the order O(e3).

• Expansion of QME Σ = 0

We have the phton Aµ, a fermion ψ̄, ψ and ghosts and their antifields. We may expand

Σ in terms of fields and antifields. We consider the first two simple combinations of

fields,

0 = Σ = ΣAC +Σψ̄ψC + · · ·
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• The condition ΣAC = 0 gives the longitudinal part of quantum correction to the photon

2pt function.

ΣAC = (A∗
µ∂µC, ΓAAq )− Str

(
KΓ

(2)
I∗

[
1 + ∆̄Γ

(2)
I

]−1
)AC

= 0

In the first term, we find the longitudinal part that balance with the measure contribution.

This way we obtain L.

• Schematically, Σψ̄ψC = 0 may be expressed in a similar manner as

Σψ̄ψC = (A∗
µ∂µC, Γψ̄Aψq ) + (eψ∗ψC + eψ̄∗ψ̄C, Γψ̄ψq )

− Str

(
KΓ

(2)
I∗

[
1 + ∆̄Γ

(2)
I

]−1
)ψ̄ψC

= 0

We are familiar with the first two terms. Here we have the extra measure term.
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Dimensionless formulation

• Easy to count mass dimensions for the quantities in the flow equation.

• We know that there could appear logarithmic terms like ln(Λ/µ) as we have seen in a

perturbative calculation. The wave function renormalization is of this type.

• x̄µ = Λxµ and p̄µ = pµ/Λ, δ
d(p̄) = Λdδd(p) .

• The dimensionless fields

Φ̄A(x̄) =
√
ZA Λ−dA Φ(x) ,

Φ̄A(p̄) =
√
ZA Λd−dA Φ(p) .
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1. Define coefficients by expanding ΓΛ in terms of fields

2. Replace all the quantities by their dimensionless forms

3. We may define the dimensionless coefficients

ΓΛ =

∞∑
n=2

∫
ddp1
(2π)d

· · · d
dpn

(2π)d
(2π)dδd(p1 + · · · pn)ΓA1,··· ,An(Λ; p1, · · · , pn)Π

n
i=1Φ

Ai(pi)

=

∞∑
n=2

∫
p̄i

ΛndΛ−d(2π)dδd(p̄1 + · · · p̄n)ΓA1,··· ,An(Λ; p1, · · · , pn)Π
n
i=1Λ

−d+dAi
Φ̄Ai(p̄i)√

ZAi
.

Define the dimensionless coefficients Γ̄A1,··· ,An

Γ̄A1,··· ,An(t; p̄1, · · · , p̄n) ≡
Λ
∑
i dAi−d√

ZA1 · · ·ZAn
ΓA1,··· ,An(Λ; p1, · · · , pn) .
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Dimensionless flow equation2

Finally, we reach the dimensionless flow equation

Γ̇I[Φ] = −(−)ϵA
1

2

∫
p

rA(p)∆
−1
AB(p)

[(
∆̄−1 + Γ

(2)
I

)−1
]AB

(p,−p)

−d ΓΛ[Φ] + (dA + ηA/2)

∫
p

ΦA(p)
∂lΓΛ[Φ]

∂ΦA(p)
+

∫
p

ΦA(p) p · ∂
∂p

(
∂l

∂ΦA(p)

)′

ΓΛ[Φ] ,

where −rA∆̄−1 corresponds to ⊗ with

rA(p) = −∂t
(

K

1−K

)
+ ηA

K

1−K
=

2x K ′(x)(
1−K(x)

)2 + ηA
K(x)

1−K(x)
.

• Expanding the dimensionless flow equation in terms of fields, we find a set of differential

equations for the dimensionless couplings.

2The bar for dimensionless fields are omitted.
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Ansatz to 1PI action for dimensionless flow eq.

(Here we have removed the antif-field dependence.)

Γ[Φ] =
1

2
ΦA∆−1

ABΦ
B + ΓI[Φ]

=
1

2

∫
p

Aµ(−p)
[
PTµν

{
p2 + T (t, p2)

}
+ PLµν

{
ξ−1p2 + L(t, p2)

}]
Aν(p)

+

∫
p

[
C̄(−p)ip2C(p) + Ψ̄(−p)/pΨ(p)

]
−e(t)

∫
p,q

Ψ̄(−p)/Aµ(p− q)Ψ(q) +
1

2

∫
p1,··· ,p4

(2π)4δ4(p1 + p2 + p3 + p4)

×
[
GS(t)

{(
Ψ̄(p1)Ψ(p2)

) (
Ψ̄(p3)Ψ(p4)

)
−
(
Ψ̄(p1)γ5Ψ(p2)

) (
Ψ̄(p3)γ5Ψ(p4)

)}
+GV (t)

{(
Ψ̄(p1)γµΨ(p2)

) (
Ψ̄(p3)γµΨ(p4)

)
+
(
Ψ̄(p1)γ5γµΨ(p2)

) (
Ψ̄(p3)γ5γµΨ(p4)

)}]
,

• T and L are quantum corrections to the gauge two point functions and contribute to

Γ(2) and they appear in the nominator of the photon propagator.
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Flow equation for photon two-point part of 1PI action, T and L

T and L are functions of x = p2 and t = lnΛ/µ.

By using the notation with α(t) = e2(t)

Dx ≡ x ∂
∂x − 1, Dt ≡ ∂

∂t − ηA(α(t), ξ(t)) ,

the flow equations are

(Dx − 1
2Dt)T (t, x) + ηA

2 x = α C
(0)
T (x) + αηψ C

(1)
T (x) ,

(Dx − 1
2Dt)L(t, x)− x

2Dtξ(t)
−1 = α C

(0)
L (x) + αηψ C

(1)
L (x) ,

• α(t) and ηA,ψ(α(t), ξ(t)) are t-dependent coefficients.

• C
(i)
T,L are coefficients functions of x = p2.

• Extracting x-linear terms from flow eqs., we find:
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– Anomalous dimentions ηA are determined algebraically.

– Flow eq. of ξ, the gauge parameter, Dtξ(t)
−1 = 0, or

∂tξ = −ηAξ

The Landau gauge ξ = 0 is consistent with the flow of ξ.

• The rest are differential equations for T (t, x = p2) and L(t, x).

Choosing the regulator function as K(x) = exp(−x),
we find differential equations for T , L in the lowest order in α,

(x∂x − 1)T (t, x) = − α(t)

8π2x2

{
4 +

2x3

3
−
(
4 + 2x− x2

)
exp(−x/2)

}
,

(x∂x − 1)L(t, x) = α(t)

8π2x2

{
12− 8x−

(
12− 2x− x2

)
exp(−x/2)

}
,

where α ≡ e2. The x-linear terms in T and L are integration constants.

— 2024.1.7-8 Functional Renormalization Group at Niigata 2024 — 29/37



These differential equations can be solved analytically to give

T (t, x) =
α(t)

6π2x2

[
1−

(
1 +

x

2
− x2

)
exp(−x/2) + x3

2

∫ x

0

e−u/2 − 1

u
du

]
,

L(t, x) = − α(t)

2π2x2

[
1− x−

(
1− x

2

)
exp(−x/2)

]
.

Two constants of integrations: one is related to the finite amount of wave function

renormalisation for the photon field and the other is fixed by comparing the functional

forms of L(t, x) here and that obtained from the WT identity: ΣAC = 0 gives the same

function for L except a constant.

The gauge mass term

Both T and L produce a constant term for small x = p2, 3α/16π2,

that will be a gauge mass (3α/16π2)Λ2 once the dimensionality is recovered.

The result is consistend with earlier expression in terms of K.
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Flow equations for α = e2, GS, GV : t ≡ lnΛ/µ

Aµ

ψ

ψ̄

(a) e3 contributions

Aµ

ψ

ψ̄

(b) eGS,V contributions

Figure 4: The regulator term should be inserted to an internal line to produce the
contributions to ∂tα.

Aµ

ψ

ψ̄

Aµ

ψ

ψ̄

Aµ

ψ

ψ̄

Figure 5: The regulator denoted by ⊗ is inserted in each internal line. All three diagrams
contribute to the flow equation for α.
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ψ

ψ̄

ψ

ψ̄

(a) e2GS,V contributions

ψ

ψ̄

ψ

ψ̄

(b) The 2nd order in GS,V

ψ

ψ̄ψ

ψ̄

(c) e4 contributions

Figure 6: The regulator term should be inserted to an internal line to produce the
contributions to ∂tGS,V

— 2024.1.7-8 Functional Renormalization Group at Niigata 2024 — 32/37



Flow equations for α = e2, GS, GV : t ≡ lnΛ/µ

∂α

∂t
= (ηA + 2ηψ)α− 6α

(4π)2
(
1− 2

9
ηψ

)
(GS − 4GV ) + 2α2ξI(4)

∂GS
∂t

= 2(1 + ηψ)GS − 3

(4π)2

(
1− 2

9
ηψ

)
(3GS − 8GV )GS

+αGS
(
ηAs

(1) + ηψs
(2) + s(3)

)
+ α2

(
ηAs

(4) + ηψs
(5) + s(6)

)
∂GV
∂t

= 2(1 + ηψ)GV +
3

2(4π)2

(
1− 2

9
ηψ

)
G2
S

+αGV
(
ηAv

(1) + ηψv
(2) + v(3)

)
+ α2

(
ηAv

(4) + ηψv
(5) + v(6)

)
• I(4), s(i), v(i) are coefficients functions of α and ξ that depend on the regulator

function K.

• The anomalous dimensions, ηi ≡ −∂tlnZi are also functions of α and ξ.
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Explicitly, the following are flow equations for the couplings: rA,ψ correspond to ⊗.

∂tα =
(
ηA + 2ηψ

)
α+

α
(
GS − 4GV

)
4π2

∫ ∞

0

dx KK̄2rψ

+
α2

8π2
ξ

∫ ∞

0

dx KK̄3
(
xrAL

2 + 2rψL
)
,

∂tGS = 2(1 + ηψ)GS +

(
3GS − 8GV

)
GS

8π2

∫ ∞

0

dxKK̄2rψ

+
αGS
8π2

∫ ∞

0

dxKK̄3

(
xrA(3T

2 + ξL2) + 2rψ(3T + ξL)

)
+

3α2

8π2

∫ ∞

0

dxKK̄4
(
xrAT

3 + rψT
2
)
,

∂tGV = 2(1 + ηψ)GV − G2
S

16π2

∫ ∞

0

dxKK̄2rψ

− αGV
8π2

∫ ∞

0

dxKK̄3

(
xrA(3T

2 − ξL2) + 2rψ(3T − ξL)

)
+

3α2

16π2

∫ ∞

0

dxKK̄4
(
xrAT

3 + rψT
2
)
,
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Hierarchical Phase Structure: a funnel halved by the α = 0 plane.

0

α

C2:

Extra FP

B: UV FP

A: IR FP
The Origin

 C1: mod 

NJL FP

0

G

 G

The Critical Surface

Figure 7: Four fixed points and critical surface and lines
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Four fixed points (in Landau gauge)

Fixed Point # of Rel. ops. (α,GS, GV )
A: I.R. 0 The origin
B: U.V. 1 (13.5, 6.99, 0.573)
C1: mod. NJL 2 (0, 26.3, − 3.29)
C2: extra 2 (0,−105, − 52.6)

• (α,GS, GV ) = (13.8, 8.17, 0.578) for the U.V. fixed point in the absence of ηA,ψ, T
and L in the flow eq.

• Aoki et. al.3 studied the same system with different regularisation functions and

identified the critical coupling without flowing the gauge coupling.

– Overall phase structure is similar.

– Some higher order terms are also included here.

3PTP 97 (1997) 479. See also Harada et. al. PTP 92 (1994) 1161.
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Summary and Discussion: we need to achieve ...

• BV formalism is useful to treat the modified gauge symmetry in ERG.

• We may solve both the flow eq. and QME perturbaively.

• Better understanding is necessary for a non-perturbative study.

• With a numerical analysis, we obtained the phase structure of our model. Further

study in needed to support this result.

• The approach based on the homotopy algebra could be helpful (cf. The talk by

Matsunaga at Strings and Fields 2022).
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