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* Originally, we were interested in the analogy between statistical mechanics and quantum
field theory (QFT)

QFT Statistical mechanics

Z((}) = J@(p exp (i) 45191 AT u) =Tr (e—ﬁ/T+uN/T) _ J@(pe— P1+uN[g)
l

Partition function in QFT (Grand) canonical partition function

dG™((x); M)
dM =0 ‘—_’ ?

Renormalization Group (RG)

Observables do not depend on the renormalization scale M Classical liquid system is a good nontrivial system
=artificial parameter to regularize the system to seek for this question



Nambu’s unpublished

\
THERMODYNAMIC ANALOGY IN QUANTUM FIELD THEORY

The thermodynamics analogy is now clear in any of such interpretations. In a system
of infinite degrees of freedom, as in quantum field theory, the action exponential is usually
assumed to have a sharp Gaussian maximum at the classical "on shell” value, and the tangent

Y. Nambu' ‘P

space around it spans the Hilbert space of physical states. The partition function then

The University of Chicago, Enrico Fermi Institute
assumes the form

Chicago, Illinois, 60637 USA Z = expl—F/T}, F = L, ~T5 (5)

All these arguments are formal ones, and ignores the fact that there are intrinsic diver-

gences which have to be controlled by renormalization. What is the thermodynamic interpre-

tation of the renormalization process?

> In this paper, he argued that the RGE of (gauge) coupling in QFT

can be interpreted as the thermodynamic relation of ideal gas system



Q: How can we formulate RG in general equilibrium systems ?

— Roughly speaking, RG in QFT sees the response of a system according to
the change of renormalization scale M (or cut off A)

— General functional flow !

C1

Theory space




1.

d(—plli4.}; @1) S - v, (.
g, 7 Z_J (Hddx’) 3, < Ok

For a given system, what we have to do is (i) to pick up/introduce a good parameter and (ii) to find a good
approximation/truncation in order to solve the flow equation

In , a Wilsonian-type RG called has been well
studied so far

We discuss another functional flow approach, i.e. Density Renormalization Group (DRG) , which describes
the response of correlation functions (1Pl vertices) against the change of density.

dcl(xl s "7 xl)

dlogn
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Set up |yt

e . e.g. @(x) = density
* For simplicity, we consider a real scalar system in classical liquid system

00 n 1 n
I =Y J(Hddx,.) () (4D x [ [ d) =5 [ e
n i=1 ' =

=1

vn({xl.}; {/lk}) = n-body microscopic potential (interaction)

= external source (e.g. chemical potential)
{/Il} denotes general parameters (coupling constants)

It can be an artificial parameter

9.V, =V, g +tXVv, ., t€][01]



Set up (equilibrium systems) 4= spo dmenser

O

n 1 n -
Hip: T = Y J(]‘!dﬂ — () (4)) % gqsoc,.) Ny ljddxfoc)cb(x)

n=1

 Partition function

Z[{4 };J] = exp(=pW[{2 };J]) = J D pePHIS]
W[{/Ik};f] Is grand-canonical potential = generating functional of connected correlation functions

5(_,6W[{/1k}§~7])
oJ(x;)---0J(x,)

s GO({x}; ) = 1 6(=pZI{}};T])

(n) - J) =
F({x};J) Z 6J(x))---6J(x,)

Connected ones Non-connected ones



KK, arXiv: 2309.104906]

» Consider a small variation of a parameter: A, = A, + 04,

* Correspondingly, the microscopic potential varies as

oA

* Then, the variation of grand-canonical potential is

1 n p
S(—pWILA Y J]) = — 84, xﬁzg[<nddxi> %
n=1

=1 a

d(—ﬁw[{ﬂz};”) _ i J'(ﬁdd ) ov ({x }) | General floyv equation

dl iIn grand-canonical formulation

a Cl

n=—



cont’d

d(—pWI[i4};J]) B o | - d v, (n) . .
- = _’BZJJ Ed X o, X G ({xl.},J) (General flow equation)

a =1

* By taking the functional derivatives, we can obtain hierarchical equations for correlation functions

d
« By definition, n-th functional derivatives of the L.H.S gives WF(H)({X"};])

a

«  Once we know the relations between G™ and F (m), we can also calculate the R.H.S
e.g. When only n = 2 contributes in the R.H.S GO (x y) = FO(x y) + F(l)(x)F(l)(y)

d(—pWI[{A};J a9
= d[,l{ i =—§ d'x | dy VZ(; - FOC,y:0) + FOC HFV(y; )




Cont’d

When only n = 2 contributes in the R.H.S

d(—pWI{A};J a | a9V
(=7 d[,l{ 1371 — g d’x | d% Vza(j; ) [F(z)(x,y;J)+F(1)(X;J)F(1)()’§J)]

Functional derivative 6/ 5J(x1) l

dF(l) X ’] ) i aV X,
dfll - g d’x | dy 2( ) F(3)(x,y,x J) +2F P (x, x,; J)F(l)(yaf)

Functional derivative 5/5J(x) / /\

dFD(x,. x,: J o0v,(x,
(d/ll ) = —g d’x | d% 20(/1 ) F(4)(x,y,xl, - ) + 2F O (x, X, J)F(l)(y,J)+2F(2)(X, 1,J)F(2)(y, )]

Flow equations for higher-order correlation functions can be obtained straightforwardly !



« However, W[{/Il};J | is not the most fundamental generating functional because

Figures from Peskin’s textbook

(crosses)

c(l)({xl.}) = one-particle irreducible (1Pl) [-point vertex

". Generating functional of 1Pl vertices = canonical potential
IS more fundamental



. Canonical potential: F[{/ll}; @] = Generating functional of 1PI vertices

Defined by Legendre transformation —

—pU{4 }; ¢] = min

J

[—ﬁW[uk};J] - [ddxj(x)qb(x)]

The extremum solution is represented by J(x) = J (p(x)

 Important property: Parameter derivative of I [{/Il}; @] is the same as that of W[{/Il};J ]

)

d-pU1iAL ) d=pWIHAL )

d),

dJ,

_ d=pWITA:ID

dJ,

r doJ ¢(x)

d),

oJ ¢(x) (

—PWLA LI, ] - |

ﬂddqub(x)qb(x))

Parameter dependence via J ¢(x)

=0



Canonica lation |

(- ﬁra[lz Jid)) 2‘; J(Hdd )

) General flow equation
iIn canonical formulation

* By taking the functional derivatives, we can obtain hierarchical equations for 1P| vertices

o'"(—=pI'{4};
C(n)({xl.};¢) = CA LA D « definition of 1Pl vertex

0P(x)-+-0¢p(x;,)

- For calculating the flow of vertices, we need to express G ( F™ ) py ¢

e.g. When only n = 2 contributes in the R.H.S GO = F@ L pOp0) — _ .71 Do

d=pULZYTD B[ g [ 0 OV0)
p)

dﬂa [ 4 |ay=52= =P ) + g0




Cont’d

When only n = 2 contributes in the R.H.S

d—pTULLOD B g [ 0 ED [ o
v o R L LSRR O R

Functional derivative 5/545()61) l

i d aVZ('x y)

deW(x,: "
- afjl ?) _ —g dix | d F(z) (3)()6) F(2)+25(d)(x —x)gb(y)

Functional derivative 5/5gb(x) / \ \
dc(z)(xl, Xrs P) n P

49y ddy (3vza(/)1€,y) F@ . (4)(x,y) F®P 4 2@, (3)(x) F@) . (3)(x) F(2)_|_25(d)(x —x)é(d)(x _y)]

N |

di,

Calculations of higher-order vertex flows are also straightforward !



d(=pU[{4,}; @) C d
) =Pl J(Hd )

a n= 1

* This is a quite general flow equation. We can apply this to various equilibrium systems.
But,

* For practical calculations, some reasonable approximations (truncations) are necessary

e.g. Derivative expansion, Local potential approximation, Kirkwood approximations, etc

/
el = Jd%( 5(0@2 + U@+ )

Leading derivative Local potential

 When partition function has some symmetry (= invariance under some changes of parameters),
we can obtain another exact relation among correlation functions (Schwinger Dyson equations)

See my paper 2309.10496 for more details
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assical Li

Y 2
. . . D:
Hamiltonian: HN — Z % + VN({xz’}) — General N-body potential
=1

Vi(ix}) = Z v(xl.,xj) + Z V3(xi’xj’xk) + ...
1<J i<j<k »
2-body < \ e

* |In the following, we consider simple liquids

Typical two-body potential

vix,y) =v(lx—=yl), vix}) =0 n=3

depends only on the relative distance



* Grand-canonical partition function

Cont’d

ZIpU) = exp(—pW[pU]) = Tr [e—ﬁﬂwﬂf dde<x>ﬂ<x>]

N
p(x) = Z 5D (x — xl.) (Density operator)
=1

* The potential can be written as

1<J

(&)

cf. general Hamiltonian  H[{4,};J] = Z

n=1"°

| 1
2.V, ) =2 JddXJddyp(y)V(x, y)p(x) + Jddxp(x) (_EV(X’ X))

/o 1 n
(gdx;l) — v, (x): (7)) % ggb(xi)




Cont’d

 We already know a general flow equation

3 . S : 0
d( ,BF[{ja},W) _ _ﬁzij<nddxi) azn y G(”)({xi};f(p) Note

FD(x) = p(x
Simple liquid () = plx)

G = F@ 4 )

4D _ P J " J aty 2D S 1GO, y) — 5Dk — ()]

el =
0/

d/

a a

o,
— - gjddxjddy ";’; 2 s [FO ) + pp() — 89 = y)p(o)]

A general flow equation in simple liquid !

Question: what parameter should we choose/introduce ?



[Parola, Reatto ('84)]

‘Hierarchical Reference Theory (HRT)]

 Introduce an IR cut off k in the (some part of) two-body potential:

5(q) forg > k
V( q) N vk( Q) ~ Low momentum modes are suppressed

0 forg < k
Fourier mode

« Why is this called “Reference” theory ? — Initial (k = o0) system = Reference system

lim \7k(q) = ?R(q) — Potential of reference system
k=00

As a reference system, IS usually chosen.

e.g. vk(x) = v,(x) +v A,k(x) such that v A,kzoo(x) =0



Cont’d

| [Parola, Reatto ('84)]

'Hierarchical Reference Theory (HRT)

» The flow equation in HRT (Just putting 4, = k)

d(—pLlp]) p [ddxjdd v (X, y)
dk 2 Y

2 ok

X | FO0x, )+ pip(y) = 69 = y)p)

* TJo eliminate these terms, it is convenient to define a new canonical generating potential

—pd [pl = — P [p] — gjddXJddy

ﬁ - -
X F(x,y) = — ETr _(akvk)F,f)_

d=pailp)  p J d J 1 OV (X, Y)
dk ok

Only F 152) appears



Cont’d

{ [Parola, Reatto ('84)]

‘Hierarchical Reference Theory (HRT) |

» By using the two-point vertex 5%(psd [p])
op(x)o(y)

= 2.y

with

d(pd k[ﬂ]) 1 -1 _ _
T S Tr [(akRk) <C]§2> + Rk) ] R (x,y)=p [vk(x, y) = v(x, y)]

* This flow equation is well-known as \Wetterich’s equation in QFT

drT gD 1 o\
e = _(0kRk)<F +Rk> ]

Rk(x) = regulator function

which suppresses low energy modes

0 forg >k

" [¢] = Effective action in QFT N
k R (g) ~{
v @(kz) forqg < k

[Wetterich ('91)]



‘HRT=Functional Renormalization Group in QFT |  contd

They are completely same !
HRT QFT (Euclidean)

dipd lpl) 1 -1 dr~'T[¢]) 1 ~1
dlﬁ ZETr [((')kRk)<C]§2)+Rk) ] ( dk“b) =5Tr [(akRk)(r,g2>+Rk> ]

What are the differences ? = Choice of initial system !

d_ [pl=T,lp] Ceal¢] = S [¢)

Some reference system Some bare action

.". We can apply many functional techniques developed in QFT to HRT ! (Part 3 when time is allowed)



‘Density renormalization group KK, S.Is0 (18]
« The scale transformation, x — Ax, corresponds to the change of density, p — /l_dp

.*. Variation of A should be somehow related to that of p

d—priph) _ ! d=prip) _

dA dp

N 2
bi
* |n the following, we consider a general N-body potential HN — Z Y VN({Xi})
i=1

. Replace the potential VN({xl.}) — VN({/lxl.}) , and correspondingly we denote

I'[V,p] — F/I[V’ o], G(n)({xi}) N Gjn)({xi}) , A = lcorresponds to

the original system

V=Volume



Density renormalization group | .« swors
. We already know the flow equation of I" /1[¢]

d(—pT [V, p)) 1 [ m0x) o
i z_ﬁ;ﬁj(nddx) o Gk

=1

© 1 n n d 0 : :
=—Axp ), — (Hddxi) DD va(){;f 2 x G"({x):7,)
n=1 - i=1 L

=1 u=1

X=AX

How can we relate this to density response ?

— Use the (redundancy) of the system !

—ﬁF1+€[V,p(x)] = — pl'V+0.V, p(x)+0.p(x)] — deJddxp(x) + O(e?)

Transformed I Original I' See our paper for the detailed derivation



Cont’d

Intuitive understanding |
Scale-transformed system Original system but with different variables

I ,1=1+6[V’ p(x)] ['[V+o.V, p(x)+0.p(x)]

X = X

Volume = V Volume = A4V,
Density field = p(x) Density field= p(x/1)

s = BT, [V.p(0)] = = BLIV4+6,V, p()+8.p(x)] — de | d¥xp(x) + O(e?)

Additional term is coming from Legendre transformation



Cont’d

—,BF1+€[V,p(x)] = — pL1V+0.V, p(x)+0,.p(x)] — de[ddxp(x) + O(e?)
In particular, when we put p(x) = p = N/V = constant, we only have volume dependence

d(_ﬂrl+€[v]) B 0 B B j J
de _ = o v TN( PLIVD —d | dvxp

°o o By using the flow equation in the L.H.S and puttinge =0 (4 = 1)

d

0 B _" __ﬁ“’i y L 6v({x}) )
Toev| CPTIVD = dgn (Hd ) 2 X X GO ((x))

T.N =1 p=1

Density renormalization group for canonical potential = Zero-th order equation



However...
0 | AR <{ Do
dlogV (=PTIV]) = | dxp = - EZJ (Hdd )Z qu x G"({x})

T.N ) n=1 i=1 u=1
* This equation itself is . This is well-known as pressure equation in liquid theory
ol'[p]
In fact, by usin = —
y 9 Yy, P
p ,B°°1J P G A CE Ay
I _p=_F _ d%y I x G
— 7 y ; "y (H ) Z ﬂzlxl o ({x})  (Pressure equation)

* On the other hand, the flow equations for higher-order vertices are new !
Step 1: Take the functional derivative of ~ —/pI",  [V,p(x)] = = f1'[V + 0.V, p(x) + o.p(x)] — dejddxp(x) + O(e?)

Step 2. and use the flow equation in the L.H.S dc(n)({x})
l
de




S

0 1 AR ! LG v,y 'GPy
_ A | ~(n) _ ” i d U I
dlogp | N, L | TUED = 0VP =0, == ; ot (Hd yi) ; ;yi o Shn) P

* |n general, we have to represent G as a functions of F*) and ¢ as usual

 When only G and G@ appear in the R.H.S, their functional derivatives are easy to calculate

 Again, they are hierarchical and need some approximations for practical calculations

Q: How do we get a closure equation ?



Closure for inverse propagator in simple Liquid|

0

dlogp

I'N

|
+ E(Xl — xz)/@ﬂ

Q)+ — — _
C (x1 xz) =

5[

P

dhy'(y — y'»

KK, S.Iso ('18) And ongoing work
with Yokota-san |

ov(y — ')

oyH

X [F(2) : C<4)(x1,x2) F@ 4L o2fpQ@) . 6(3)(X1) . FQ@) . C(3)(x2) L FD 4 25(d)(x1 _ y)é(a,’)(x2 _ y/)]

* In 1Pl formalism, approximations (truncations) can be studied systematically

e.g. Kirkwood superposition approximation (KSA)

M) 1y i (n)
Replace ¢V’ by ideal gas case C.ionl !

|
— ©) N (/) _ (d) _
— Cleal © 25 (X, = x)0"V(x, — x,)

p



Cont’d

.. Closure equation for the inverse propagator in simple Liquid

dlogp

I'N

+ E(x1 — xz)ﬂaﬂ c(z)(x1 — x2) = —

26D(x; — x,)

PE

contact term‘ | ‘

5[

2d

[ ¥

P

dhy'(y — y')

ov(y — ')

oyH

* It is difficult to solve this analytically = needs numerical approach

Note F® = — @™

2
F(Z)(y)F(Z)(y/) + _4F(2)(x1 _ xz)F(Z)(xl — y)F(z)(xz . y/) 4 25(d)(x1 . y)é(d)(xz — y/)

constant term

* The R.H.S is just a convolution — One loop expression in momentum space

* |n principle, we can further improve the truncation based on the Virial expansion

o0
(n) — ~(n) (n) i—(n—1) .(n)
c'’ = — C.. T 2 p C

1deal 1deal

7=

e.g.

(D=0, D fof-f

f= eV — 1 =Mayer’s f function




First attempt in hard-sphere system | "=~
1 on
T op

Fourier mode of ¢ Compressibility k. =

—¢= |R=-10 Nk=150 dk=0.1
IR=-10 Nk=200 dk=0.1
—#— IR=-10 Nk=500_dk=0.1

Unusual behavior

In the left plot, we realized that we focused on very high density region (i.e. packing fraction )

— Need to refine the calculations. In progress with Yokota-san (RIKEN)
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Regulator function

e \We consider HRT in the followina. ~1 - 1
O WD Lo ()| A =slemn-ses)
dk 2 _ k k k k _

* Conventionally, sharp cut-off schemes were often used in HRT

e.d. [Parola, Reatto ('84), JM Caillol ('06)]

v.(p) =W(p) X O0.(p—k)— v(p) XO(p — k)

Mild sharp cut off Ultra sharp cut off



S SO S P N SR S A B ST P ST O e SRS B P SIS Cont’d

* In functional RG in QFT, however, people usually take action-independent regulator

o) = |
2 Py _ _ Sh t
p [9((k) 1) 1] (Sharp cut off)

2 ™
(k2 —pz) 0 (1 - (5) ) (Optimized sharp cut off)  [Litim (2007)]

00 02 04 06 08 10 12 14

D 272

In these cases, the flow equation does not depend on the microscopic (bare) action.
.. The microscopic information only appears as the initial condition Fk:A[gb] = SA[gb]



Optical cut off in ¢ | liquids

[Work in progress]

* We propose to use the optimized cut-off regulator

2 /. = wave function renormalization
Zk p %

Rk(P) — Kdr2 (k> =pHo| 1 12 K = some dimension 1 parameter
(e.g. K = a”! = microscopic scale)

~J

 The flow equation becomes

1 d—72

L d(pTlpD) _ N,Z k" J Vo

d
N — Area(Sd‘l) Vd dk 9) 0 Y Kd+25(2)( p) + Zk(l _ y)

d (zﬂ)d 00 02 04 06 038 10 12 14
pelk*

Integration in the R.H.S can be done analytically under the Local potential Approximation (LPA)
— One of the advantages of the optical cut-off scheme !



« LPA V4

1
ALl = = Jddx (Tk(aﬂp)z + Uk(p)> —  p)=Zp°+ Up)

1 dUlp] B N,
Ké*2kd dlogk 1+ Z7'k=2U{(p)

(Flow equation for the local potential Uk(p))

* Another good point of this scheme = LPA is consistent with the ideal-gas initial condition

ﬂrideal[p] = — J'ddxp [1 — logp] «— Z__=0, U_ (p)=- K*p(1 —logp) .

But, once interaction is added,
Can we come up with a good initial condition within LPA ?
— | eave this issue and let us focus on critical phenomena for now



FIow equation for dimensionless potential | Work in progress|

1 dUlp] B N,
Kdt+2kd  df 1 +Zk=2U;(p)

Flow equation t =logk

e J|tis convenient to introduce dimensionless variables
_ U (p)
P 7 ( k

<= Kddzrzkdgz ’ t(Z) i Kd+2jd ’

C1

Theory space

( 0 d—-2+n, 0 >_ N,
— d

) — p—
ot 2 dlog 7 1+U0/(z) ¢

.. Fixed point is determined by Non-pertubative effects

d U >X<(Z) — p— N J Second-order differential equation
2 dlog 7 1 + Ui(z)



[Work in progress]

' Polynomial expansion and fixed point

d U(z) = — N
ot 2 dlogz 1 + U/(z) d

« We can study fixed point by assuming a )" invariant polynomial Ut(p) = Z Z

c = 4 — d RGEs
Wilson-Fischer fixed point

dr, N,
F 21 = A
a2 T T AT
2* 12 + ¢

di, N, 6/14%
) — —A 4
dt Y1+ A,)? 41+ A, 188

) N 000 904N Ay =
6 | 2(3_d)/16: d (_/IS_I_ 2744 2744 ) 4% Nd(12+€)3

€

forA, =0 (n > 6)

dt (1+ 1,7 14+4, (A4+4,)?



expansion |

Crltlcal exponent in Polynomia Work in progress|

oo Lz oo
g am : 4 A B BT

* Linearlized flow around the fixed point (Note: we haven’t used epsilon expansion yet)

dsh, £ N/12 + &) | .
" = — (2 - 5) 5,12 oy 5/14 Diagonalization d 5/12 _ Cll 0 5/12

dsh, 726 ' dr \8), 0 a,/ \o4

— = O/, + €04
dt N(12+¢)? 2 4

B 6—48+\/36+248+2282

> ) — — Matches the leading result of epsilon expansion
I 6 ekl

Vd

A

However...
which is much smaller than the observed value v ~ 0.63

Higher-order vertices should be included in the present formalism
EEE— or

Polynomial expansion itself may not be appropriate



J? S o L i e o fae B Lo ossme LY B D 1 i e ap Qe B Lo pARag —o e gD

do next

 Want to improve the calculations of critical exponents without relying on polynomial expansion

Actually, critical exponents in LPA have been already studied in many literatures

N

LPA DE, DE,4

Correlation-length exponent v

Include higher derivative terms

DEs

LPA”

0.5925
0.650
0.7090

0.5879(13)
0.6308(27)
0.6725(52)

potential approximation like

0.5876(2)
0.62989(25)
0.6716(6)

0.63012(16)

0.631
0.679

BMW

0.589
0.632
0.674

PT

0.5882(11)
0.6304(13)
0.6703(15)

MC

0.58759700(40)
0.63002(10)
0.67169(7)

€-exp

0.5874(3)
0.6292(5)
0.6690(10)

Table form arXiv: 2006. 04853

Conformal Bootstrap
CB

0.5876(12)
0.629971(4)
0.6718(1)

. Thus, 1t would be better to consider non-local

I'nepalpel = Jddx Jddy (

Zk(-xa }’)

2

(0p(x))(9p(y)) + U(p(X),p(y))> ?



 We discussed general functional flow approach in equilibrium systems

d(—pU[{4,}; qb]) <1
Gt S (e ) 5

x G"({x}; )

 Once we get a flow equation, what we should do is (1) to find/introduce a good parameter and (2) to find a
good approximation/truncation to solve the flow equation for a given system

 C(lassical liguid system is a good application field of flow approach: HRT, DRG, and more
 Even after some approximation/truncation, numerical calculations are still necessary

* |n my opinion, there is still plenty of rooms for analytical studies
e.g. critical phenomena, phase transitions, new closure equations, etc...

Thank you for your attention !






[Y. Nambu (87)]

» Grand potential of Ideal gas —pW
1deal

= exp (ﬁ,u + log(VT“m_“+3)) , a= % ford =3

* On the other hand, consider two-loop RGE of gauge coupling

dg* , 11 M\ b e
— :b 4 bb6 —_— —=——p.1 — ——21 — |+ -

dlogM pg) 18 T 2 g g ! Og<Mo> b, Og(&)) *

- > a4 by
* By putting g- > T, M ->YV — > u, d >
bl bl
04
* —_— ﬁ — ﬁ 4 log X log(—ﬁW- ) .". RGE = adiabatic process such that
T, T V,T¢ ideal W=constant in Ideal gas

But, the above identifications look very weird



[Callan Symanzik equations |

[KK, arXiv:2309.10496]

« (Consider a situation such that the variation of a parameter 7 := /10 can be compensated by the

changes of other variables

['{r=o1, 4, V}; ¢l = T'l{t, 4 +04,, V+0oV}; p+6¢]

 |n this case, the f-derivative Is related to the derivatives of other variables.

d(—pU{t. 4, V}, @]

dt

.. Using the flow equation in the L.H.S, we obtain
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Generalized Callan-Symanzik equation
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dp T lpD) 1 -1
dkk = ETr [(dkRk) <F](€2) + Rk> ]

* Optimization criterion = maximize the minimum of inverse propagator

If this is zero, it means the existence

Maximize min(F](Cz)(p) + Rk(p)) - of Gapless mode
D And the flow might be ill-defined

* But, still so many possible regulators ... =& Choose a simple one !

e.g. Flat inverse propagator choice Simplest one

m,? -+ ka2 -+ Rk(p) = constant for p? < k2 2

— Rk<p>=zk<k2—p2>9(1 o )

with the conditions
R(p) =0tor p>k

lim R (p) = 0
k—0

k2

[Litim (01)]



