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Who am I ?
• Ph.D. (Science) in 2017; Supervised by Prof. Hikaru Kawai


• First postdoc in KEK as JSPS fellow hosted by Prof. Satoshi Iso (~2018)


    


• Postdoc in Standard University and Seoul National University (~ 2022)


• Now → Research fellow in Korean institute for Advanced Study (KIAS)


• My primary research field is particle physics and cosmology

Title of thesis: “The problems of the Standard Model and their relations to Planck scale Physics” 

One of the collaborations: “Density Renormalization Group (DRG) for classical liquids”
→ I will explain this below



Why did we get interested in liquid systems ?
• Originally, we were interested in the analogy between statistical mechanics and quantum 

field theory (QFT)

QFT Statistical mechanics

Z({λl}) = ∫ 𝒟ϕ exp (i∑
l

λlSl[ϕ]) Z(T, μ) = Tr (e−Ĥ/T+μN̂/T) = ∫ 𝒟ϕe−SE[ϕ]+μN[ϕ]

Partition function in QFT (Grand) canonical partition function

dG(n)({xi}; M)
dM

= 0

Observables do not depend on the renormalization scale 

=artificial parameter to regularize the system 

M

Renormalization Group (RG) ?
Classical liquid system is a good nontrivial system


to seek for this question



Nambu’s unpublished paper (’87)

＊ In this paper, he argued that the RGE of (gauge) coupling in QFT 

can be interpreted as the thermodynamic relation of ideal gas system



Q: How can we formulate RG in general equilibrium systems ?

→ Roughly speaking, RG in QFT sees the response of a system according to 

the change of renormalization scale M (or cut off Λ)

→ Why not consider a general response of general (artificial) parameters λ ?  

→ General functional flow ! 

M

ΓΛ[ϕ]ΓΛ′ 
[ϕ]

Flow

Γλ=1[ϕ]

Γλ=0[ϕ]



Brief summary of this talk

1. It is possible to construct a variety of exact functional flow equations in equilibrium systems


2. For a given system, what we have to do is (i) to pick up/introduce a good parameter and (ii) to find a good 
approximation/truncation in order to solve the flow equation


3. In classical liquid system, a Wilsonian-type RG called Hierarchical reference theory (HRT) has been well 
studied so far 


4. We discuss another functional flow approach, i.e. Density Renormalization Group (DRG) , which describes     
the response of correlation functions (1PI vertices) against the change of density.

d(−βΓ[{λa}; ϕ])
dλa

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn

∂λa
× G(n)({xi}; Jϕ)

dcl(x1, ⋯, xl)
d log n

= ⋯
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Set up (equilibrium systems)
• For simplicity, we consider a real scalar system

H[{λl}; J] =
∞

∑
n=1

∫ (
n

∏
i=1

ddxi) 1
n! vn({xi}; {λl}) ×

n

∏
i=1

ϕ(xi) − β−1 ∫ ddxJ(x)ϕ(x)

d = space dimension

 


e.g. density 

in classical liquid system

β = 1/T
ϕ(x) =

 = n-body microscopic potential (interaction)

 = external source (e.g. chemical potential)


 denotes general parameters (coupling constants)  

It can be an artificial parameter 

vn({xi}; {λk})
J(x)

{λl}

e.g. vn = vn,R + t × vn,A , t ∈ [0,1]



• Partition function

H[ϕ; J] =
∞

∑
n=1

∫ (
n

∏
i=1

dxd
i ) 1

n! vn({xi}; {λl}) ×
n

∏
i=1

ϕ(xi) − β−1 ∫ ddxJ(x)ϕ(x)

d = space dimension

 β = 1/T

Z[{λk}; J] = exp(−βW[{λk}; J]) = ∫ 𝒟ϕe−βH[ϕ;J]

 is grand-canonical potential = generating functional of connected correlation functionsW[{λk}; J]

F(n)({xi}; J) =
δ(−βW[{λk}; J])
δJ(x1)⋯δJ(xn)

G(n)({xi}; J) = 1
Z

δ(−βZ[{λk}; J])
δJ(x1)⋯δJ(xn)

Connected ones Non-connected ones

Set up (equilibrium systems)
cont’d



Functional flow theory

• Consider a small variation of a parameter:  


• Correspondingly, the microscopic potential varies as 


• Then, the variation of grand-canonical potential is 

λa → λa + δλa

[KK, arXiv: 2309.10496]

δvn({xi}, {λl}) := δλa × ∂vn

∂λa

δ(−βW[{λl}; J]) = − δλa × β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn

∂λa
× G(n)({xi}; J)

d(−βW[{λl}; J])
dλa

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn({xi})
∂λa

× G(n)({xi}; J)

non-connected correlation functions

General flow equation 

in grand-canonical formulation∴



Parameter response theory

• By taking the functional derivatives, we can obtain hierarchical equations for correlation functions 


• By definition, -th functional derivatives of the L.H.S gives 


• Once we know the relations between  and , we can also calculate the R.H.S

n

G(n) F(m)

d
dλa

F(n)({xi}; J)

d(−βW[{λl}; J])
dλa

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn

∂λa
× G(n)({xi}; J)

d(−βW[{λl}; J])
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[F(2)(x, y; J) + F(1)(x; J)F(1)(y; J)]

e.g. When only  contributes in the R.H.Sn = 2 G(2)(x, y) = F(2)(x, y) + F(1)(x)F(1)(y)

(General flow equation)

cont’d



d(−βW[{λl}; J])
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[F(2)(x, y; J) + F(1)(x; J)F(1)(y; J)]

When only  contributes in the R.H.Sn = 2

Functional derivative  δ/δJ(x1)

dF(1)(x1; J)
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[F(3)(x, y, x1; J) + 2F(2)(x, x1; J)F(1)(y; J)]
Functional derivative  δ/δJ(x2)

dF(2)(x1, x2; J)
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[F(4)(x, y, x1, x2; J) + 2F(3)(x, x1, x2; J)F(1)(y; J) + 2F(2)(x, x1; J)F(2)(y, x2; J)]

Flow equations for higher-order correlation functions can be obtained straightforwardly ! 

Cont’d



• However,  is not the most fundamental generating functional because  W[{λl}; J]

F(3)

F(2)

F(2) F(2)

c(3)

F(4)

F(2) F(2)

F(2) F(2)

c(4)
c(3)

c(3)

one-particle irreducible (1PI) -point vertexc(l)({xi}) = l

Figures from Peskin’s textbook

 Generating functional of 1PI vertices = canonical potential

is more fundamental 

∴



Canonical formulation

• Canonical potential:   = Generating functional of 1PI vertices


• Important property: Parameter derivative of  is the same as that of 

Γ[{λl}; ϕ]

Γ[{λl}; ϕ] W[{λl}; J]

−βΓ[{λk}; ϕ] = min
J [−βW[{λk}; J] − ∫ ddxJ(x)ϕ(x)]Defined by Legendre transformation →

∵ d(−βΓ[{λk}; ϕ])
dλl

=
d(−βW[{λk}; J])

dλl J=Jϕ

− ∫
dδJϕ(x)

dλl

δ
δJϕ(x) (−βW[{λl}; Jϕ] − ∫ ddxJϕ(x)ϕ(x))

Parameter dependence via Jϕ(x)
=0

=
d(−βW[{λk}; J])

dλl J=Jϕ

The extremum solution is represented by J(x) = Jϕ(x)



• By taking the functional derivatives, we can obtain hierarchical equations for 1PI vertices 


• For calculating the flow of vertices, we need to express  (  ) by G(n) F(m) c(n)

Canonical formulation 

∴ d(−βΓ[{λa}; ϕ])
dλa

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn

∂λa
× G(n)({xi}; Jϕ) General flow equation


in canonical formulation

c(n)({xi}; ϕ) :=
δn(−βΓ[{λl}; ϕ])
δϕ(x1)⋯δϕ(xn)

← definition of 1PI vertex

e.g. When only  contributes in the R.H.Sn = 2 G(2) = F(2) + F(1)F(1) = −c(2)−1 + ϕϕ

d(−βΓ[{λl}; J])
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[−c(2)−1(x, y) + ϕ(x)ϕ(y)]
by Legendre transformation

Cont’d



d(−βΓ[{λl}; ϕ])
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[F(2)(x, y; Jϕ) + ϕ(x)ϕ(y)]

When only  contributes in the R.H.Sn = 2

Functional derivative  δ/δϕ(x1)

dc(1)(x1; ϕ)
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[F(2) ⋅ c(3)(x1) ⋅ F(2) + 2δ(d)(x1 − x)ϕ(y)]
Functional derivative  δ/δϕ(x2)

dc(2)(x1, x2; ϕ)
dλa

= − β
2 ∫ ddx∫ ddy

∂v2(x, y)
∂λa

[F(2) ⋅ c(4)(x, y) ⋅ F(2) + 2F(2) ⋅ c(3)(x1) ⋅ F(2) ⋅ c(3)(x2) ⋅ F(2) + 2δ(d)(x1 − x)δ(d)(x2 − y)]

Calculations of higher-order vertex flows are also straightforward ! 

Cont’d



A few important remarks

• This is a quite general flow equation. We can apply this to various equilibrium systems.                       
But, we solve nothing yet.


• For practical calculations, some reasonable approximations (truncations) are necessary


• When partition function has some symmetry (= invariance under some changes of parameters),                
we can obtain another exact relation among correlation functions  (Schwinger Dyson equations)

d(−βΓ[{λa}; ϕ])
dλa

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn

∂λa
× G(n)({xi}; Jϕ)

e.g.  Derivative expansion, Local potential approximation, Kirkwood approximations, etc 

Γ[ϕ] = ∫ ddx ( Z
2 (∂ϕ)2 + U(ϕ) + ⋯)

Leading derivative Local potential

See my paper 2309.10496 for more details



Plan of Talk

1. General flow approach in statistical mechanics


2. Classical liquids systems (HRT and DRG)


3. Optimized cut off and critical phenomena in HRT (in progress) 


4. Summary 



Classical Liquid Systems

• Hamiltonian: 


• In the following, we consider simple liquids 

HN =
N

∑
i=1

p2
i

2m
+ VN({xi}) ← General N-body potential

VN({xi}) = ∑
i<j

v(xi, xj) + ∑
i<j<k

v3(xi, xj, xk) + ⋯

2-body 3-body

v(x, y) = v( |x − y | ) , vn({xi}) = 0 n ≥ 3
depends only on the relative distance 

Typical  two-body potential



Classical Liquid Systems

• Grand-canonical partition function


• The potential can be written as 

∑
i<j

v(xi, xj) = 1
2 ∫ ddx∫ ddyρ(y)v(x, y)ρ(x) + ∫ ddxρ(x)(− 1

2 v(x, x))

ρ(x) =
N

∑
i=1

δ(d)(x − xi) (Density operator)

Z[βU] = exp(−βW[βU]) = Tr [e−βHN+β ∫ ddxU(x)ρ(x)]

H[{λl}; J] =
∞

∑
n=1

∫ (
n

∏
i=1

dxd
i ) 1

n! vn({xi}; {λl}) ×
n

∏
i=1

ϕ(xi)cf. general Hamiltonian 

Only  and   exist !v1 v2

Cont’d



Classical Liquid Systems

• We already know a general flow equation 


d(−βΓ[{λa}; ϕ])
dλa

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn

∂λa
× G(n)({xi}; Jϕ)

d(−βΓ[ρ])
dλa

= − β
2 ∫ ddx∫ ddy

∂v(x, y)
∂λa

× [G(2)(x, y) − δ(d)(x − y)ρ(x)]
Simple liquid

= − β
2 ∫ ddx∫ ddy

∂v(x, y)
∂λa

× [F(2)(x, y) + ρ(x)ρ(y) − δ(d)(x − y)ρ(x)]

F(1)(x) = ρ(x)

A general flow equation in simple liquid ! 

G(2) = F(2) + F(1)F(1)

Note

Question: what parameter should we choose/introduce ?

Cont’d



Hierarchical Reference Theory (HRT)

• Introduce an IR cut off  in the (some part of) two-body potential:


• Why is this called “Reference” theory ? → Initial ( ) system = Reference system

k

k = ∞

[Parola, Reatto (’84)] 

ṽ(q) → ṽk(q) ∼ {ṽ(q)
0

for q ≫ k

for q ≪ k
Fourier mode

Low momentum modes are suppressed

lim
k=∞

ṽk(q) = ṽR(q) = Potential of reference system

As a reference system, the short-range repulsive part is usually chosen.  
e.g.  such that  vk(x) = vR(x) + vA,k(x) vA,k=∞(x) = 0



Hierarchical Reference Theory (HRT)

• The flow equation in HRT


• To eliminate these terms, it is convenient to define a new canonical generating potential

[Parola, Reatto (’84)] 

d(−βΓk[ρ])
dk

= − β
2 ∫ ddx∫ ddy

∂vk(x, y)
∂k

× [F(2)
k (x, y) + ρ(x)ρ(y) − δ(d)(x − y)ρ(x)]

Trivial terms (mean field contributions)

−β𝒜k[ρ] = − βΓk[ρ] − β
2 ∫ ddx∫ ddy(vk(x, y) − v(x, y)){ρ(x)ρ(y) − δ(d)(x − y)ρ(x)}

∴
d(−β𝒜k[ρ])

dk
= − β

2 ∫ ddx∫ ddy
∂vk(x, y)

∂k
× F(2)

k (x, y) = − β
2 Tr [(∂kvk)F

(2)
k ]

Cont’d

Only   appearsF(2)
k

(Just putting )λa = k



Hierarchical Reference Theory (HRT)

• By using the two-point vertex 


• This flow equation is well-known as Wetterich’s equation in QFT

[Parola, Reatto (’84)] 

d(β𝒜k[ρ])
dk

= 1
2 Tr [(∂kRk)(C(2)

k + Rk)
−1]

δ2(β𝒜k[ρ])
δρ(x)δ(y) := C(2)

k (x, y)
with

Rk(x, y) = β [vk(x, y) − v(x, y)]

d(ℏ−1Γk[ϕ])
dk

= 1
2 Tr [(∂kRk)(Γ(2) + Rk)

−1]  = regulator function 

which suppresses low energy modes 

Rk(x)

Effective action in QFTΓk[ϕ] = R̃k(q) ∼ {0
𝒪(k2)

for q ≫ k

for q ≪ k[Wetterich (’91)] 

Cont’d



HRT=Functional Renormalization Group in QFT 

d(β𝒜k[ρ])
dk

= 1
2 Tr [(∂kRk)(C(2)

k + Rk)
−1] d(ℏ−1Γk[ϕ])

dk
= 1

2 Tr [(∂kRk)(Γ(2)
k + Rk)

−1]

They are completely same !

What are the differences ? → Choice of initial system ! 

𝒜k=∞[ρ] = ΓR[ρ] Γk=Λ[ϕ] = SΛ[ϕ]

Some reference system Some bare action

Non-local in general which is usually local

QFT (Euclidean)HRT

Cont’d

 We can apply many functional techniques developed in QFT to HRT ! (Part 3 when time is allowed)   ∴



Density renormalization group
• The scale transformation, , corresponds to the change of density,  


                                  Variation of  should be somehow related to that of 


• In the following, we consider a general N-body potential


• Replace the potential  , and correspondingly we denote 

x → λx ρ → λ−dρ

∴ λ ρ

VN({xi}) → VN({λxi})

[KK, S.Iso (’18)] 

HN =
N

∑
i=1

p2
i

2m
+VN({xi})

d(−βΓ[ρ])
dλ

= ⋯
d(−βΓ[ρ])

dρ
= ⋯

Γ[V, ρ] → Γλ[V, ρ] , G(n)({xi}) → G(n)
λ ({xi}) ,

V=Volume   

corresponds to

the original system 

λ = 1

?



Density renormalization group

• We already know the flow equation of Γλ[ϕ]

[KK, S.Iso (’18)] 

d(−βΓλ[V, ρ])
dλ

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn(λxi)
∂λ

× G(n)
λ ({xi}; Jϕ)

= −λ × β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi)
n

∑
i=1

d

∑
μ=1

xμ
i

∂vn({xi})
∂xμ

i x=λx

× G(n)
λ ({xi}; Jϕ)

→ Use the symmetry (redundancy) of the system ! 

How can we relate this to density response ? 

−βΓ1+ϵ[V, ρ(x)] = − βΓ[V+δϵV, ρ(x)+δϵρ(x)] − dϵ∫ ddxρ(x) + 𝒪(ϵ2)
See our paper for the detailed derivation

Cont’d

Original ΓTransformed Γ



Intuitive understanding

Volume = V

Density field = ρ(x)

v(λx)

Γλ=1+ϵ[V, ρ(x)] Γ[V+δϵV, ρ(x)+δϵρ(x)]

Volume = ,

Density field=  

λdV
ρ(x/λ)

v(x)

λx → x

Original system but with different variables Scale-transformed system

∴ − βΓ1+ϵ[V, ρ(x)] = − βΓ[V+δϵV, ρ(x)+δϵρ(x)] − dϵ∫ ddxρ(x) + 𝒪(ϵ2)

Cont’d

Additional term is coming from Legendre transformation



Cont’d

In particular, when we put constant, we only have volume dependence ρ(x) = ρ = N/V =

d(−βΓ1+ϵ[V])
dϵ

ϵ=0

= d
∂

∂ log V
T,N

(−βΓ[V]) − d∫ ddxρ

−βΓ1+ϵ[V, ρ(x)] = − βΓ[V+δϵV, ρ(x)+δϵρ(x)] − dϵ∫ ddxρ(x) + 𝒪(ϵ2)

∴ By using the flow equation in the L.H.S and putting ϵ = 0 (λ = 1)

∂
∂ log V

T,N

(−βΓ[V]) − ∫ ddxρ = − β
d

∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi)
n

∑
i=1

d

∑
μ=1

xμ
i

∂vn({xi})
∂xμ

i
× G(n)({xi})

Density renormalization group for canonical potential = Zero-th order equation



However…

• This equation itself is not new.  This is well-known as pressure equation in liquid theory


• On the other hand, the flow equations for higher-order vertices are new !

In fact, by using  
∂Γ[ρ]

∂V
= − p

p
T

− ρ = − β
d

∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi)
n

∑
i=1

d

∑
μ=1

xμ
i

∂vn({xi})
∂xμ

i
× G(n)({xi}) (Pressure equation)

−βΓ1+ϵ[V, ρ(x)] = − βΓ[V + δϵV, ρ(x) + δϵρ(x)] − dϵ∫ ddxρ(x) + 𝒪(ϵ2)Step 1: Take the functional derivative of 

Step 2: and use the flow equation in the L.H.S dc(n)({xi})
dϵ

= ⋯

∂
∂ log V

T,N

(−βΓ[V ]) − ∫ ddxρ = − β
d

∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi)
n

∑
i=1

d

∑
μ=1

xμ
i

∂vn({xi})
∂xμ

i
× G(n)({xi})



DRGE for n-point 1PI vertex

• In general, we have to represent  as a functions of  and  as usual 


• When only  and  appear in the R.H.S, their functional derivatives are easy to calculate


• Again, they are hierarchical and need some approximations for practical calculations

G(n) F(2) c(l)

G(1) G(2)

− ∂
∂ log ρ

T,N

+ 1
d

n

∑
i=1

xμ
i ∂(i)

μ c(n)({xi}) − δn0Vρ − δn1 = − β
d

∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddyi)
n

∑
i=1

d

∑
μ=1

yμ
i

∂vn({yi})
∂yμ

i
×

δnG(n)
λ ({yi})

δϕ(x1)⋯δϕ(xn)

[KK, S.Iso (’18), KK (’23)] 

Q: How do we get a closure equation ?



Closure for inverse propagator in simple Liquid

• In 1PI formalism, approximations (truncations) can be studied systematically   

− ∂
∂ log ρ

T,N

+ 1
d

(x1 − x2)
μ∂μ c(2)(x1 − x2) = − β

2d ∫ ddy∫ ddy′ (y − y′ )μ ∂v(y − y′ )
∂yμ

× [F(2) ⋅ c(4)(x1, x2) ⋅ F(2) + 2F(2) ⋅ c(3)(x1) ⋅ F(2) ⋅ c(3)(x2) ⋅ F(2) + 2δ(d)(x1 − y)δ(d)(x2 − y′ )]

e.g. Kirkwood superposition approximation (KSA)

F(3)

F(2)

F(2)F(2)

c(3)
KSA =

Replace  by ideal gas case  !c(n) c(n)
ideal

c(3)
ideal = 1

ρ2 δ(d)(x1 − x3)δ
(d)(x2 − x3)

[KK, S.Iso (’18) And ongoing work 

with Yokota-san ]

×



 Closure equation for the  inverse propagator in simple Liquid∴

− ∂
∂ log ρ

T,N

+ 1
d

(x1 − x2)
μ∂μ c(2)(x1 − x2) = − β

2d ∫ ddy∫ ddy′ (y − y′ )μ ∂v(y − y′ )
∂yμ

× [−
2δ(d)(x1 − x2)

ρ3 F(2)(y)F(2)(y′ ) + 2
ρ4 F(2)(x1 − x2)F

(2)(x1 − y)F(2)(x2 − y′ ) + 2δ(d)(x1 − y)δ(d)(x2 − y′ )]

Note  F(2) = − c(2)−1

 constant term contact term

Cont’d

• It is difficult to solve this analytically → needs numerical approach 


• The R.H.S is just a convolution → One loop expression in momentum space


• In principle, we can further improve the truncation based on the Virial expansion

nontrivial term

c(n) = c(n)
ideal → c(n)

ideal +
∞

∑
m=1

ρi−(n−1)c(n)
i

e.g.

 =Mayer’s f functionf = eβv − 1

c(3)
1 = 0 , c(3)

2 ∼ f ⋅ f ⋅ f



First attempt in hard-sphere system

In the left plot, we realized that we focused on very high density region (i.e. packing fraction ) 


→ Need to refine the calculations. In progress with Yokota-san (RIKEN)

η ≫ 1

Fourier mode of c(2) Compressibility  κT = 1
T

∂n
∂p

Unusual behavior 

Different colors

= Different UV cut off scales


in momentum integration

βU0 = 5

v(x) = U0 × θ(a − |x | )



Plan of Talk

1. General flow approach in statistical mechanics


2. Classical liquids systems (HRT and DRG)


3. Optimized cut off and critical phenomena in HRT (in progress)


4. Summary 



How to choose cut-off function ?

• We consider HRT in the following.


• Conventionally, sharp cut-off schemes were often used in HRT

d(β−1Γk[ρ])
dk

= 1
2 Tr [(∂kRk)(Γ(2)

k + Rk)
−1] Rk(x − y) = β [vk(x − y) − v(x − y)]

ṽk(p) = ṽ(p) × θϵ(p − k) → ṽ(p) × θ(p − k)
Ultra sharp cut off 

Regulator function

Mild sharp cut off

e.g. [Parola, Reatto (’84), JM Caillol (’06)] 

Question: Is this the only way  ?

How about functional RG in QFT ?



How to choose cut-off function ? 
• In functional RG in QFT, however, people usually take action-independent regulator

R̃k(p) =
p2 [θ (( p

k )
2

− 1)
−1

− 1]
(k2 − p2) θ (1 − ( p

k )
2)

(Sharp cut off)

(Optimized sharp cut off)

In these cases, the flow equation does not depend on the microscopic (bare) action.

 The microscopic information only appears as the initial condition ∴ Γk=Λ[ϕ] = SΛ[ϕ]

Why not using the similar cut-off scheme in liquid systems ?

[Litim (2001)]

Cont’d

Sharp cut off

Optimized cut off



Optical cut off in classical liquids

• We propose to use the optimized cut-off regulator 


• The flow equation becomes 

R̃k(p) =
Zk

Kd+2 (k2 − p2)θ (1 − p2

k2 )
wave function renormalization

some dimension 1 parameter 


  (e.g.  = microscopic scale )

Zk =
K =

K = a−1{
1
Vd

d(βΓk[ρ])
dk

=
NdZkkd−1

2 ∫
1

0
dy

yd − 2
2

Kd+2c̃(2)(p) + Zk(1 − y)Nd = Area(Sd−1)
(2π)d

This is still exact (no approximation yet)


Integration in the R.H.S can be done analytically under the Local potential Approximation (LPA)

→ One of the advantages of the optical cut-off scheme !  

[Work in progress]

R̃k(p)



LPA in optical cut-off scheme

• LPA


• Another good point of this scheme = LPA is consistent with the ideal-gas initial condition

βΓk[ρ] = 1
Kd+2 ∫ ddx ( Zk

2 (∂μρ)2 + Uk(ρ))
∴ 1

Kd+2kd

dUk[ρ]
d log k

=
Nd

1 + Z−1
k k−2U′ ′ k(ρ)

c̃(2)(p) = Zk p2 + U′ ′ k(ρ)

(Flow equation for the local potential )Uk(ρ)

βΓideal[ρ] = − ∫ ddxρ [1 − log ρ] Zk=∞ = 0 , Uk=∞(ρ) = − Kd+2ρ(1 − log ρ) .

[Work in progress]

But, once interaction is added, classical liquid system is non-local   

Can we come up with a good initial condition within LPA ? 


→ Leave this issue and let us focus on critical phenomena for now



Flow equation for dimensionless potential

• It is convenient to introduce dimensionless variables 

1
Kd+2kd

dUk[ρ]
dt

=
Nd

1 + Zkk−2U′ ′ k(ρ)  t = log k

z = ρ
K d + 2

2 k d − 2
2

, Ut(z) =
Uk(ρ)

Kd+2kd ,

Flow equation

[Work in progress]

(d + ∂
∂t

−
d − 2 + ηk

2
∂

∂ log z ) Ut(z) =
Nd

1 + U′ ′ t (z)
− Nd

Non-pertubative effects  Fixed point is determined by∴

(d −
d − 2 + η*

2
∂

∂ log z ) U*(z) =
Nd

1 + U′ ′ *(z)
− Nd Second-order differential equation

Ut=1[ϕ]

Ut[ϕ]



Polynomial expansion and fixed point

• We can study fixed point by assuming a  - invariant polynomial ℤ2 Ut(ρ) =
∞

∑
n=2

λ2n(t)
(2n)! z2n

dλ2
dt

+ 2λ2 = −
Nd

(1 + λ2)2 λ4

dλ4
dt

+ ϵλ4 =
Nd

(1 + λ2)2 (−λ4 + 6λ2
4

1 + λ2 )
dλ6
dt

+ 2(3 − d)λ6 =
Nd

(1 + λ2)2 (−λ8 +
20λ2λ4
1 + λ2

−
90λ2λ3

4
(1 + λ2)2 )

ϵ = 4 − d
Wilson-Fischer fixed point

λ2* = − ϵ
12 + ϵ

λ4* = 288ϵ
Nd(12 + ϵ)3

for  λn = 0 (n ≥ 6){
 ⋯

[Work in progress]

(d + ∂
∂t

−
d − 2 + ηk

2
∂

∂ log z ) Ut(z) =
Nd

1 + U′ ′ t (z)
− Nd

RGEs



Critical exponent in Polynomial expansion

• Linearlized flow around the fixed point (Note: we haven’t used epsilon expansion yet)

dδλ2
dt

= − (2 − ε
3 ) δλ2 −

Nd(12 + ε)2

144 δλ4

dδλ4
dt

= − 72ε2

Nd(12 + ε)2 δλ2 + εδλ4

Diagonalization
− d

dt (δλ2
δλ4) = (a1 0

0 a2) (δλ2
δλ4)

a1 = 6 − 4ε + 36 + 24ε + 22ε2

6 →
ε≪1

2 − ε
3

Matches the leading result of epsilon expansion

However… ν = 1
a1

≃ 0.54 (ε = 1) which is much smaller than the observed value   ν ≃ 0.63

 Higher-order vertices should be included in the present formalism

 or 


 Polynomial expansion itself may not be appropriate   

[Work in progress]



What to do next
• Want to improve the calculations of critical exponents without relying on polynomial expansion


• How does Localness appear in classical liquid system at around critical point ?  


• Classical liquid system is non-local in nature.  Thus,  it would be better to consider non-local 
potential approximation like 

ΓNLPA[ρ] = ∫ ddx∫ ddy ( Zk(x, y)
2 (∂ρ(x))(∂ρ(y)) + U(ρ(x), ρ(y))) ?

Actually, critical exponents in LPA have been already studied in many literatures 
Table form arXiv: 2006. 04853

Include higher derivative terms Conformal Bootstrap



Summary
• We discussed general functional flow approach in equilibrium systems


• Once we get a flow equation, what we should do is (1) to find/introduce a good parameter and (2) to find a 
good approximation/truncation to solve the flow equation for a given system


• Classical liquid system is a good application field of flow approach: HRT, DRG, and more


• Even after some approximation/truncation, numerical calculations are still necessary                                                    


• In my opinion, there is still plenty of rooms for analytical studies 

      e.g. critical phenomena, phase transitions, new closure equations, etc…

d(−βΓ[{λa}; ϕ])
dλa

= − β
∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn

∂λa
× G(n)({xi}; Jϕ)

Thank you for your attention ! 



Backup



Nambu’s discussion

• Grand potential of Ideal gas


• On the other hand, consider two-loop RGE of gauge coupling


• By putting

[Y. Nambu (87)]

−βWideal = exp (βμ + log(VTαm−α+3)) ,  for α = 3
2 d = 3

dg2

d log M
= β(g2) = b1g

4 + b2b
6 1

g2 = 1
g2

0
− b1 log ( M

M0 ) −
b2
b1

log ( g2

g0 ) + ⋯

g2 → T , M → V−1/d d
b1

→ μ , d
b2
b1

→ α

μ
T0

= μ
T

+ log ( VTα

V0Tα
0 ) ∝ log(−βWideal)  RGE = adiabatic process such that 


W=constant in Ideal gas
∴

But, the above identifications look very weird  



Callan Symanzik equations

• Consider a situation such that the variation of a parameter  can be compensated by the 
changes of other variables 


• In this case, the -derivative is related to the derivatives of other variables. 

t := λ0

t

[KK, arXiv:2309.10496]

Γ[{t−δt, λk, V}; ϕ] = Γ[{t, λk+δλk, V+δV}; ϕ+δϕ]

(∑
k

δλk

δt
∂

∂λk
+ δV

δt
∂

∂V
+ ∫ ddx

δϕ(x)
δt

δ
δϕ(x) ) Γ[{t, λk, V}, ϕ] = − β

∞

∑
n=1

1
n! ∫ (

n

∏
i=1

ddxi) ∂vn({xi})
∂t

× G(n)({xi}; Jϕ)

−
d(−βΓ[{t, λk, V}, ϕ])

dt
= (∑

k

δλk

δt
∂

∂λk
+ δV

δt
∂

∂V
+ ∫ ddx

δϕ(x)
δt

δ
δϕ(x) ) Γ[{t, λk, V}, ϕ]

 Using the flow equation in the L.H.S, we obtain∴

Generalized Callan-Symanzik equation



Optimized regulator

• Optimization criterion = maximize the minimum of inverse propagator


• But, still so many possible regulators … → Choose a simple one !

d(β−1Γk[ρ])
dk

= 1
2 Tr [(∂kRk)(Γ(2)

k + Rk)
−1]

min
p

(Γ(2)
k (p) + Rk(p))Maximize

If this is zero, it means the existence 

of Gapless mode


And the flow might be ill-defined 

e.g.  Flat inverse propagator choice 

m2
k + Zk p2 + Rk(p) = constant

with the conditions  

Rk(p) = 0 for p > k

lim
k→0

Rk(p) = 0

Rk(p) = Zk(k
2 − p2)θ (1 − p2

k2 )
Simplest one 

[Litim (’01)]

for  p2 < k2


