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O(N) models
• They have played an important role in our understanding of 

second order phase transitions.


• N-component vector order parameter　　　　　　　　　　　　
N=1…Ising, N=2…XY, N=3…Heisenberg Model


• Critical physics (controled by WF FP) has been well 
understood with various theoretical approaches…Exact 
solution (2d  Ising), Renormalization group（d=4-ε, 2+ε 
expansion), Large-N analysis, conformal bootstrap

We study multicrical fixed points at Large-N and show 
that nonperturbative effects are important. 



Common wisdom on the criticality 
of O(N) models (finite N case)

A nontrivial fixed point        with n relevant (unstable) directions 
branches from  G at       . (Wilson-Fisher FP, which describes second 
order phase transition, at d=4 and the tricritical FP         at d=3….)

GLW Hamiltonian �i

Below the critical dimension                           , the  term 
becomes relevant around the Gaussian FP (G).

(ϕ2
i )n+1dn = 2 + 2/n

Tn
dn

T2

H[�] =
1

2

Z

x
(r�i)

2 + U(�)

U(ϕ) = a2ϕ2
i + a4(ϕ2

i )2 + a6(ϕ2
i )3 + . . .

N-component 
order parameter



Bardeen-Moshe-Bander (BMB) 
Phenomena at  and  d = 3 N = ∞
Bardeen-Moshe-Bander found an intriguing 
phenomenon in  models with  interaction. 

(i) at  and , there exists a finite line of fixed 
points that starts at the Gaussian FP ( ) and ends at 
a special FP called the BMB FP 

(ii) the FPs for  are interacting FP (2-unstable and 
1-magrinal) but the critical exponents are all identical 
to the Gaussian ones.

O(N) τ(φ2)3

d = 3 N = ∞

τ = 0

τ ≠ 0



Bardeen-Moshe-Bander (BMB) 
Phenomenon at  and d = 3 N = ∞

(iii) The FPs are UV stable on the critical surface 

(iv) The FP potential of BMB FP has singularity at 
small fields, suggesting spontaneous symmetry 
breaking of scale invariance   
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Figure 10. The phase diagram of 3d large-N scalar field theories in the plane of the quartic (�) and
sextic (⌧) couplings from the Polchinski flow, with arrows indicating the flow towards the infrared. The UV
conformal window with asymptotic safety 0  ⌧  ⌧crit (blue line) is limited by the Gaussian (G) and the
Bardeen-Moshe-Bander (BMB) fixed points (full dots). Along the UV-line (� = 0), UV fixed points with
short-distance vacuum instabilities (⌧ < 0) or incomplete fixed points (⌧ > ⌧crit) are also indicated (dashed
blue lines). The Wilson-Fisher (WF) fixed point takes the role of an IR attractive sink for asymptotically
safe trajectories with � = 0 and �� > 0.

connect the Gaussian and the BMB fixed point in the UV with the Wilson-Fisher fixed point in
the IR are separatrices, and correspond to the full (blue) trajectories shown in Fig. 9.

On the other hand, trajectories running towards negative quartic coupling (0 < ��� ⌧ 1)
will enter a strongly coupled region where couplings approach an IR Landau pole. Along these
trajectories, and as a consequence of an increasingly negative quartic coupling � < 0, the the-
ory may also undergo a first order phase transition towards a phase with spontaneous symmetry
breaking. Using (37), we find once more that the onset of strong coupling is characterised by the
RG invariant characteristic scale (118). If additionally �(⇤) 6= 0, trajectories can no longer reach
the Wilson-Fisher fixed point in the IR. Instead, trajectories will run towards a low-energy regime
in the symmetric phase (� < 0) or in a phase with spontaneous symmetry breaking (� > 0).
The phase transition towards symmetry breaking may be first or second order, depending on the
values of �� and ⌧ at the high scale. Finally, we note that some of the trajectories terminating
at the Wilson-Fisher fixed point do not arise from an UV safe theory. These include trajectories
emanating from incomplete fixed points, fixed points with unstable vacua in the UV, or e↵ective
models whose UV limit terminates at a UV Landau pole, as indicated in Fig. 10.
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Flow of τ
• The flow of  in perturbation theory at Large N becomes 

 

where  

• Two roots of  :   
 (corresponding to the perturbative tricritical FP) exists 

between  with .  

 exists for .   
 
(Note that perturbation theory might be not very precise for )

τ̃ = N2τ

Nβτ̃ = − 2αλ̃ + 12λ̃2 − π2λ̃3/2 + O(1/N )

α = (3 − d)N

βτ̃ = 0 τ̃± = 4/π2(3 ± 9 − π2α/4)

τ̃−

3 − αc /N < d < 3 αc = 36/π2 ≃ 3.65

τ̃+ 3 − αc /N < d

τ̃+



   , A2 Ã3

• Hereafter we call the FP corresponding  ( ) as  ( ) 

The number of relevant directions around a FP is indicated with the subscript.  

• How can we understand the line of FPs and its end point at  using 
Large-N limit of finite  FPs (  , )?

τ̃− τ̃+ A2 Ã3

N = ∞

N A2 Ã3

NRRG 
 LPA,DE2



Fixed point structure at 
general values of (d, N)

• Understanding BMB phenomena is essential for 
understanding fixed point structure of  models 
at general values of .

O(N)

(d, N)

16

FIG. 11: Point S0 and the lines Nc,S(d)
h
A2 = Ã3

i
(violet diamonds), N 0

c,S0(d)
h
Ã3 = SÃ4

i
(green crosses) and

Nc,S0(d)
h
SA3 = SÃ4

i
(orange squares). Starting from P , SA3 is followed on a clockwise closed path travelling

around S0. When d > 3, SA3 and SG3 are one and the same FP. SA3 remains real all along the path but back to the
point P, it is Ã3. Following SA3 along a path travelling twice around S0 it comes back to SA3.

●

●

~~ ~~

FIG. 12: Left: The two curves Nc(d) and N 0
c(d) respectively defined by A2=Ã3 and SWF2=SG3 and the curve

3.6/(3� d). Nc(d) is calculated with the LPA (red circles) and at order 2 of the derivative expansion (blue squares).
Right: The four curves Nc (d) (A2=SG3, violet stars), N 0

c (d) (SWF2=SG3, lightblue stars), N 0
c,S0 (d) (SG3=SÃ4

green crosses) and Nc,S0(d) (SA3=SÃ4, orange crosses).

A. The first non trivial homotopy structure - The Ã3 and SA3 (or SG3) FPs

We have numerically found that by lowering the value of N , the lines Nc,S0(d) and N 0
c,S0(d) intersects at a point S0

with, at LPA, S0 = (dLPA
S0 ' 3.08, NLPA

S0 ' 55), see Fig. 11. Notice in particular that the critical lines where A2=Ã3

and SA3=SÃ4 split when N is decreased whereas they were almost superimposed at large N . This is expected as
the leading order of the boundary layer analysis only implies that the critical line on which SA3 collapses with SÃ4

converges to the critical line of A2 and Ã3 for sufficiently large N .
We may also notice that SÃ4 collides with Ã3 on N 0

c,S0(d) and with SA3 on Nc,S0(d) which implies that it ceases
to exist as a real valued FP below the point S0. However, since dLPA

S0 > 3, both Ã3 and SÃ4 exist as physical FPs in
d = 3 at this order of approximations on a finite range of values of N , between N = 55 and N = 72.

An interesting feature related to the existence of the point S0 is the existence a non trivial homotopy in the (N, d)
plane when SA3 is followed along a loop that travels around the point S0. This is a simple consequence of the topology
in parameter space of what is known as a "cusp bifurcation". Further details on this bifurcation and its relationship
with the RG and the point S0 are given in Appendix I. For now, it is sufficient to notice that along the clockwise path
shown in Fig. 11 and starting at the point P , SA3 remains real after coming back to P because along this path it
does not collide with any other FP. However, back at P , the potential of the FP is no longer the initial potential. It
becomes in fact the potential of Ã3 as can be checked by continuously decreasing d at fixed N from the point P down

Phys.Rev.E 106 (2022) 5, 054105



Bardeen-Moshe-Bander (BMB) 
line at  and d = 8/3 N = ∞

It is shown with FRG that 
(J. Comellas and A. Travesset, Nucl. Phys. B 1997), 

(i) at  and , there exists a finite line of 
tetracritical fixed points (3 unstable+1 marginal) that 
starts at the Gaussian FP ( ) and ends at the WF FP. 
(Question: How can the stabilities of the FPs be different?) 

(ii) the FPs (  WF) for  are interacting FP but the 
critical exponents are all identical to the Gaussian ones.

d = 8/3 N = ∞

λ = 0

≠ λ ≠ 0



Flow of λ
• Calling  the coupling in front of  term, 
the large-N flow equation for  becomes 

 with  

• The nontrivial tetracritical FP solution is  
and does not indicate disappearance of FP in the 
limit  at fixed . (However, in this limit, the FP 
is no longer controlled perturbatively.)

λ/(384N3) λ(φ2)4

λ

∂tλ = − 3ϵλ +
9λ2

4N
+ O(N−2) ϵ = 8/3 − d

λ* = 4ϵN/3

N → ∞ ϵ



Non perturbative 
renormalization group (NPRG) 
• Modern implementation of Wilson’s RG that takes the 
fluctuation into account step by step in lowering the cut-off 
wavenumber k,  in terms of wavenumber-dependent effective 
action                                                        �k

Microscopic Hamiltonian

Effective action (Free energy), 
where all the fluctuations are  

taken into account. 

H

k = ⇤k = ⇤� �⇤k = 0
……



NPRG equation

3

where Ji · �i =
P2

i=1

´
x Ji (x) · �i (x) , and �Hk =P2

i=1 �i(x) · Rk(x � y) · �i(y). The idea underlying the
effective average action is to integrate in Zk only the
fluctuations of large wave-numbers (rapid modes) com-
pared to k while freezing the others (slow modes) and
to progressively decrease k. Rk(q2), which is the Fourier
transform of Rk(x), plays the role of separating rapid
and slow modes: It almost vanishes for |q| > k so that
the rapid modes are summed over and is large (of order
k2) below k so that the fluctuations of the slow modes
are frozen. We define as usual Wk[J i] = lnZk[J i]. Thus,
the order parameter 'j (x) at scale k is defined by

'i (x) = h�i (x)i =
�Wk [J i]

�J i (x)
(7)

The running effective average action �k ['i] is defined by
means of the modified Legendre transform by

�k ['i] = �Wk [J i] + Ji ·'i ��Hk ['i] (8)

where J i is defined such that Eq. (7) holds for fixed 'i.
From this definition one can show that

(
�k=⇤ ' H

�k=0 = �
, (9)

where the cutoff ⇤ is the inverse of the lattice spacing
a. Equations (9) imply that �k interpolates between the
hamiltonian of the system when no fluctuation has been
summed over, that is, when k = ⇤, and the Gibbs free
energy � when they have all been integrated, that is,
when k = 0. We define the variable t, called “RG time”,
by t = ln (k/⇤). The exact flow equation for �k reads [?
? ]:

@t�k['i] =
1

2
Tr

ˆ
x,y

@tRk(x�y)

✓
�2�k ['i]

�'↵
i (x) �'↵0

i0 (y)
+Rk (x� y) �i,i0�↵,↵0

◆�1

,

(10)
for ↵,↵0 = 1, 2, · · ·N and i, i0 = 1, 2.

IV. TRUNCATION OF THE NPRG EQUATION

It is generally not possible to solve exactly the above
flow equation and several approximations are employed in
practice. In this paper, we employ the so-called LPA (lo-
cal potential approximation) or LPA’. In these schemes,
�k is approximated by a series expansion in the gradient
of the field, truncated at its lowest non trivial order:

�k ['i] =

ˆ
ddx

✓
1

2
Zk

h
(@'1)

2 + (@'2)
2
i
+ Uk (⇢, ⌧)

◆
,

(11)
where the k-dependent potential Uk (⇢, ⌧) is defined as

⌦Uk (⇢, ⌧) = �k ['i] (12)

where 'i, i = 1, 2 are constant fields and ⌦ is the vol-
ume of the system. Zk is assumed to be independent of

the fields 'i in both LPA and LPA’. It is set to one in
LPA: ZLPA

k = 1, which leads to a vanishing anomalous
dimension: ⌘ = 0. In LPA’ calculations, the anomalous
dimension ⌘ is obtained from the flow of Zk since it can
be shown that at criticality:

Zk!0 ⇠
✓
k

⇤

◆�⌘

. (13)

We give a precise definition of Zk in Appendix A as well
as of ⌘. At criticality, the k-dependent effective action is
attracted towards the fixed point solution of the NPRG
equation once it is expressed in terms of the dimensionless
renormalized fields  ̃i and a dimensionless local potential
Ũk( ̃i). We thus define the dimensionless and renormal-
ized quantities:

 ̃i =
�
Zkk2�d

�1/2
 i

Ũk( ̃i) = k�dUk ( i) .
(14)

We expand the fixed point potential in the following form

Ũk

⇣
 ̃1,  ̃2

⌘
=

2n+4m14X

n,m=0

1

n!m!
ãn,m (⇢̃� ̃)n ⌧̃m, (15)

and solve the flow equation for the coupling constants
ãn,m. In the following calculations, we truncate the ex-
pansion at the 14-th order of  i for i = 1, 2.

V. RESULTS FOR FINITE BUT LARGE N

Here we explain the results for finite N as shown in
Fig. 1. C�, C�� and C��� exist in d0c (N) < d < 4,
d0c (N) < d < d00c (N) and 2 < d < d00c (N), respectively,
for sufficiently large N & 20. C�, C�� and C��� are
the multicritical fixed points with two, three and two
relevant directions. There occur the following saddle-
node bifurcations: In decreasing d with fixed N & 20,
firstly in d = d00c (N), C�� and C��� appear as a pair of
unstable and stable fixed points with respect to the RG
trajectory joining them. Secondly in d = d0c (N), C� and
C�� fixed points collide with each other and vanish.

In Fig. 1, we also plot the curve Nc (d) on which C�
and C�� fixed points collides with each other and van-
ish. This curve Nc (d) was obtained with another full-
funtional treatment of the local potential approximated
NPRG flow equation, which will be explained elsewhere.

For N & 20, we have confirmed that increasing the or-
der of truncation only slightly changes d0c (N) and d00c (N).
For smaller d and N , our field expansion method is not
very accurate because of poor convergence of the ex-
pansion, which have been often the case for NPRG cal-
culations. From this result, we cannot see the behav-
ior of d0c (N) and d00c (N) for smaller N and more ac-
curate numerical method would be necessary for that
purpose. For the moment, nevertheless, one can make
the following conjecture by simple extrapolation of the

NPRG equation (Wetterich, Phys. Lett. B, 1993) is 

2

FIG. 2. The two curves Nc(d) and N ′
c(d) respectively defined

by T2 = C3 and C2 = C3 and the curve 3.6/(3 − d). Nc(d)
is calculated with the LPA (red circles) and at order 2 of the
derivative expansion (blue squares). We show a path joining
the point Q located at (d = 3−, N = 40) to the point at
N = ∞ and d = 2.8.

Let us first assume that for the O(N) models, the ex-
act RG flow equation of the Gibbs free energy Γ – also
called effective action – is continuous in d and N . Then,
assuming moreover that the FPs Γ∗ of these flows are
well-defined functions of d and N , they must also be
continuous functions of these parameters and can there-
fore be followed smoothly in the (d,N) plane. For con-
stant fields, the functional Γ∗[φ] reduces to the effec-
tive potential U∗(φ). If U∗ can be Taylor expanded:
U∗(φ) =

∑
m g∗m(φ2)m with φ = 〈ϕ〉, the smoothness of

Γ∗ as a function of d and N implies that of the g∗m which
can therefore be followed continuously along a given path
of the (d,N) plane. Notice that we do not need in the
following to expand U∗. However, the same continuity
argument can be used on the function U∗ itself rather
than on its couplings.

Let us now consider for instance the tricritical FP T2.
The paradox appears when we try to follow smoothly T2

from a point in the (d,N) plane where we know from
perturbation theory that it exists to a point where, ac-
cording to the common wisdom, it is believed not to exist.
We consider for instance the path shown in Fig. 2 start-
ing at Q in d = 3− and N = 40 and going to N = ∞
in d = 2.8. How can we solve the apparent contradiction
that T2 should evolve continuously and that it exists at
one end of the path, that is, in Q, and not at the other
end? The simplest solution is that either T2 disappears
before reaching N = ∞ or it becomes singular at N = ∞.
We shall see in the following that both these possibilities
are indeed realized depending on the path followed to
reach N = ∞. In particular, we shall see that there ex-
ists a line Nc(d) (or equivalently dc(N)), see Fig.2, such
that when T2 is followed along a path that crosses this
line – such as the path shown in Fig. 2 that starts in
Q – it collapses with another FP on the line Nc(d) and
disappears. This is why T2 is not found at N = ∞ for
d < 3. And the paradox is now clear: According to the

common wisdom, no known FP is available for collapsing
with T2. We must therefore conclude that the common
wisdom yields an incomplete picture and that there is a
new FP – that we indeed find and call C3 – with which T2

collapses on Nc(d). Part of the solution to the paradox
above is that C3 is nonperturbative: It cannot emerge
from G in any upper critical dimension because the sta-
bility of G in the O(N) models is well-known for all d and
N from perturbation theory. This is why C3 has never
been found previously. Some natural questions are then:
What is the stability of C3? Does it exist in d = 3 for
some values of N? Is it the only nonperturbative FP of
the O(N) models? Since, most probably, it does not ap-
pear alone, where does it appear and together with which
other FP? Does it exist in the large-N limit and why is
it not found in the usual 1/N expansion [2, 3, 12]? It is
the aim of this Letter to provide a first study of these
different questions.
The method of choice for studying FPs beyond per-

turbation theory is the nonperturbative (also called func-
tional) renormalization group (NPRG) which is the mod-
ern implementation of Wilson’s RG. It allows us to de-
vice accurate approximate RG flows. The NPRG is based
on the idea of integrating fluctuations step by step [17].
In its modern version, it is implemented on the Gibbs
free energy Γ [18–21]. A one-parameter family of mod-
els indexed by a scale k is thus defined such that only
the rapid fluctuations, with wavenumbers |q| > k, are
summed over in the partition function Zk. The decou-
pling of the slow modes (|q| < k) in Zk is performed by
adding to the original O(N)-invariant (ϕ2)2 hamiltonian
H a quadratic (mass-like) term which is nonvanishing
only for these modes:

Zk[J ] =

∫
Dϕi exp(−H[ϕ]−∆Hk[ϕ] + J ·ϕ). (1)

with ∆Hk[ϕ] =
1
2

∫
q Rk(q2)ϕi(q)ϕi(−q) – where, for in-

stance, Rk(q2) = αZ̄kq2(exp(q2/k2)− 1)−1 with α a
real parameter and Z̄k the field renormalization – and
J · ϕ =

∫
x Ji(x)ϕi(x). The k-dependent Gibbs free en-

ergy Γk[φ] is defined as the (slightly modified) Legendre
transform of logZk[J ]:

Γk[φ]+ logZk[J ] = J ·φ− 1

2

∫

q
Rk(q

2)φi(q)φi(−q). (2)

with
∫
q =

∫
ddq/(2π)d. The exact RG flow equation of

Γk reads [19]:

∂tΓk[φ] =
1

2
Tr[∂tRk(q

2)(Γ(2)
k [q,−q;φ] +Rk(q))

−1] (3)

where t = log(k/Λ), Tr stands for an integral over q

and a trace over group indices and Γ(2)
k [q,−q;φ] is the

matrix of the Fourier transforms of the second functional
derivatives of Γk[φ] with respect to φi(x) and φj(y).
For the systems we are interested in, it is impossible to

solve Eq. (3) exactly and we therefore have recourse to



Derivative expansion(DE2)
• It is impossible to solve the NPRG equation exactly and we 

have recourse to approximations, 

• Simpler approximations…LPA(η=0), LPA’ approximation

3

FIG. 3. Singular point S and the two linesNc(d) (red squares)
and N ′

c(d) (blue stars). Starting from P , the FP T2 is followed
along a clockwise (left) or anti-clockwise (right) closed path
surrounding S. On the clockwise path, T2 becomes C2 after
a full rotation. On the anti-clockwise path, T2 collides with
C3 on Nc(d) and disappears. It actually becomes complex-
valued and remains so all along the dashed path. On N ′

c(d)
it becomes real again but is now C2. The path joining Nc(d)
and N ′

c(d) at fixed N = 33 is also shown in panel (a).

approximations. The most appropriate nonperturbative
approximation consists in expanding Γk[φ] in powers of
∇φ [23–32]. At order two of the derivative expansion, Γk

reads:

Γk[φ] =

∫

x

(
1

2
Zk(ρ)(∇φi)

2 +
1

4
Yk(ρ)(φi∇φi)

2

+Uk(ρ) +O(∇4)

)
.

(4)

where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ε = 4 − d (or ε = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ε′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
Material.

We have numerically integrated the fixed point equa-
tion for the effective potential: ∂tŨ∗ = 0, Eq. (??), at
the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
mension dc(N) by collapsing with a 3-unstable FP that
we call C3 as already explained above, see Figs. 2 and 3.
We find that the line Nc(d) is asymptotic to the d = 3
axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
of the Nc(d) curve is 3.6/(3− d), see Fig. 2.
We have checked that the picture above is quantita-

tively stable when we go from the LPA to the order two
of the derivative expansion, Eq. (4), see Fig. 2. This is
completely consistent with the fact that η is very small on
the curve Nc(d) for N sufficiently large and decreases at
largeN which makes the LPA flow of Uk exact atN = ∞.
For instance, for N = 40, we find dc(40) = 2.924 and in
this dimension, η = 1.7 10−3. Thus, although we have
no rigorous proof, we can safely claim that the existence
of C3 is doubtless and that the curve Nc(d) approaches
N = ∞ when d → 3. We show the T2 = C3 FP potential
shape on N = Nc(d) in the Supplemental Material. It is
a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
instance, let us again consider Fig. 3.b. We start at P
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fore conclude that most probably C3 exists at N = ∞
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2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
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axis, see Fig.2, as expected for the disappearance of T2
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Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
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We find two interesting features of the curve N ′

c(d).
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the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
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in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ε = 4 − d (or ε = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ε′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk
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nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
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we call N ′
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that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
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T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
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hibiting the double-valued structure of T2 and C2 makes
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I. INTRODUCTION

The Kosterlitz-Thouless (KT) transition occurs in two-
dimensional systems with global O(2) symmetry such as the
two-dimensional XY model [1–3]. It has been observed in
liquid helium films [4–7], arrays of Josephson junctions [8],
trapped two-dimensional atomic gases [9–12], etc.

The KT transition differs from more conventional finite-
temperature phase transitions in a number of aspects. It is
not characterized by spontaneous symmetry breaking, and
the low-temperature phase exhibits algebraic order (rather
than true long-range order). Nevertheless, the system shows a
nonzero “stiffness” ρs(T ) for all temperatures T < TKT. Above
the transition temperature TKT, one observes a standard disor-
dered phase with exponentially decaying correlation functions.
However, the correlation length ξ does not diverge as a
power law of τ = T − TKT but shows an essential singularity
ξ ∼ exp(c/

√
τ ). The transition is also characterized by a jump

of the stiffness which vanishes for T > TKT and takes the
universal value 2/π for T → T −

KT [13,14].
The key role of topological defects (vortices) was rec-

ognized by Kosterlitz and Thouless who formulated the
KT transition as a vortex-antivortex-pair unbinding transition
[2,3,15–17]. Standard studies of the KT transition explicitly
introduce the vortices in the analysis and use a mapping
to the Coulomb gas or sine-Gordon models. A perturbative
renormalization-group approach is then sufficient to derive
the universal features of the KT transition.

The KT transition in the two-dimensional linear O(2) model
(ϕ4 theory for a two-component vector field) provides an
important benchmark for the nonperturbative renormalization
group (NPRG). A distinctive feature of the NPRG approach
is that the vortices are not introduced explicitly [18–20],
and thus the RG equations are the standard ones of the
d-dimensional O(N ) model with N = 2 and d = 2. In the
approach of Gersdorff and Wetterich (GW) [19], the KT
transition is not captured stricto sensu since the correlation
length is always finite. Nevertheless, below a “transition”
temperature TKT one finds a line of quasifixed points implying
a very large correlation length (although not infinite as

expected in the low-temperature phase of the KT transition).
Furthermore, the essential scaling of the correlation length
ξ above TKT is reproduced except in the immediate vicinity
of TKT. Thus, although the NPRG approach by GW does
not yield a low-temperature phase with an infinite correlation
length, it nevertheless allows one to estimate the KT transition
temperature and reproduce most of the universal features of
the transition.

Using a lattice version of the NPRG, TKT has been computed
with reasonable accuracy for the ferromagnetic XY model on
the square lattice [21]. The NPRG approach has also been used
to study two-dimensional superconductors [22] and bosonic
superfluids [23–26]. The superfluid transition temperature in
a two-dimensional Bose gas, with or without an optical lattice
[24,25], deduced from the NPRG approach turns out to be in
very good agreement with Monte Carlo simulations [27–29].

In spite of these successes, the NPRG approach to the
two-dimensional linear O(2) model is not fully satisfying.
First, from a conceptual point of view, one would like to
find a true transition between a high-temperature phase with
exponentially decaying correlations and a low-temperature
phase exhibiting algebraic order and a line of fixed points.
Second, from a more practical point of view, we expect the
NPRG approach to yield reasonable estimates not only of
the transition temperature TKT and the anomalous dimension
η(TKT) but also of the temperature dependence of the anoma-
lous dimension η(T ) and the stiffness ρs(T ) [including the
value of ρs(T −

KT)] in the low-temperature phase, which has not
been possible so far due to the absence of a line of true fixed
points at low temperatures.

In this paper, we reconsider the NPRG approach to the
two-dimensional linear O(2) model. While our RG equations
are the same as those of GW [19], we explore various ways to
set up the RG procedure. In particular we use the freedom in
the choice of the infrared regulator and the way the anomalous
dimension is computed. The commonly used exponential
regulator [30] with an arbitrary prefactor α considered as a
variational parameter, along with a fixed renormalization point
(see Sec. III B), allows us to find a transition with all expected
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propagator as

Gk,T(p; ρ0,k) = 2ρ0,k

ρs,kp2
, (11)

where 2ρ0,k = 〈ϕ(r)〉2 is the square of the order parameter
at scale k. Note that the momentum dependence of Gk,T in
Eq. (11) follows from the derivative expansion and is therefore
valid only for |p| # k. Alternatively, ρs,k can be defined from
the change "#k of the effective action when the direction of
the order parameter φ(r) =

√
2ρ0,k[cos θ (r), sin θ (r)] at scale

k varies slowly in space,

"#k[φ] = 1
2
ρs,k

∫
ddr (∇θ )2. (12)

Equations (11) and (12) lead to the same expression,

ρs,k = 2Zk(ρ0,k)ρ0,k, (13)

of the stiffness. The physical stiffness is defined as ρs(T ) =
limk→0 ρs,k(T ).

Equations (9) and (13) are crucial to understand the
long-distance behavior of the system when d = 2. In the
high-temperature phase both ρs,k and ρ0,k vanish for a nonzero
value of k of the order of the inverse of the correlation length
ξ . Zk reaches a finite limit for k → 0 since the anomalous
dimension η = limk→0 ηk vanishes. In the low-temperature
phase, we expect ηk and ρs,k to take a finite value in the limit
k → 0 (this implies Zk ∼ k−η for k → 0). This is possible
only if ρ0,k ∼ kη when k → 0, which is consistent with
ρ̃0,k = Zkρ0,k taking a finite limit (as expected for a critical
system). The result ρ0,k ∼ kη is in agreement with both the
absence of long-range order (limk→0 ρ0,k = 0) and an infinite
correlation length (ρ0,k > 0 for any k > 0).

III. NUMERICAL INTEGRATION OF RG EQUATIONS

A. Optimized regulator for d = 3

Let us first briefly review the determination of the critical
exponents in three dimensions. One can either integrate the
flow equations for various initial conditions until a fixed point
is reached, or linearize the flow equations about the fixed-point
solution defined by ∂t Ũ

∗ = ∂t Z̃
∗ = ∂t Ỹ

∗ = 0. If the flow
equation of the effective action #k[φ] were solved exactly, the
results would be independent of the infrared regulator Rk . This
is not the case when the effective action is expanded to second
order in a derivative expansion. In particular, with the regulator
(5), the critical exponents depend on the parameter α. We
determine what we consider as the optimal value of α from the
principle of minimal sensitivity (PMS) [39], i.e., by demanding
that locally the critical exponents are independent of α (e.g., for
the correlation-length exponent ν, dν/dα = 0 for α = αopt).
The renormalization point ρ̃r is taken fixed (for numerical
convenience), and, provided the fixed point exists, a change
in ρ̃r is equivalent to a change in α [40] so that the critical
exponents obtained from the PMS are independent of ρ̃r. Thus
the k-dependent renormalization point ρ̃0,k , which becomes
k independent at small k since ρ̃0,k → ρ̃∗

0 at criticality, is
equivalent to any other choice ρ̃r = const.

The results for the critical exponents ν and η are shown
in Tables I and II for the three-dimensional O(2) and O(3)

TABLE I. Critical exponents ν and η in the three-dimensional
O(2) model obtained from the derivative expansion to second order
and the principle of minimum sensitivity. Also shown are the results
obtained from field theory (FT) and Monte Carlo (MC) simulations.

NPRG FT [36] MC [37]

ν 0.6707 0.6700(6) 0.6717(1)
η 0.047 0.0334(2) 0.0381(2)

models. They compare very well with results from field theory
(resummed perturbative theory) and Monte Carlo simulations.

B. Optimized regulator for d = 2

In the two-dimensional case we numerically integrate the
flow equations of Ũ ′

k,Z̃k,Ỹk starting at scale k = * with the
bare action (1) and for various values of r0 ∝ T − T0 (we
take u0/*

2 = 0.003). From the behavior of the RG flow in
the k → 0 limit, we can clearly identify a high-temperature
and a low-temperature phase. The high-temperature phase is
characterized by the vanishing of ρs,k and ηk at a nonzero
value of k. In the low-temperature phase, both ρs,k and ηk

remain finite for k → 0 while ρ0,k vanishes as a power law as
anticipated in the preceding section. The transition temperature
TKT is defined from the critical value r0c separating the two
phases.

In the low-temperature phase and at fixed ρ̃r, the long-
distance behavior of the RG flow depends on the infrared
regulator [i.e., the parameter α in (5)] in a crucial way. We
expect the RG trajectory to flow into a fixed point as in
the standard KT theory. ηk and ρs,k [and more generally the
functions Ũk(ρ̃), Z̃k(ρ̃), and Ỹk(ρ̃)] should then become k
independent for sufficiently small k. Figure 1 shows that for
an arbitrary value of α, in general we do not reach a fixed
point, and ρs,k and ηk exhibit only quasiplateaus at small k
with slopes that are either positive or negative depending on
α. Thus, for each temperature T < TKT (but not too small,
see below), it is possible to fine tune α such that we obtain a
true plateau. We view this particular value αopt ≡ αopt(T ) as
the optimal choice of the regulator. We find αopt(TKT) = 2.0
and αopt(T ) < 2 for T < TKT. In the high-temperature phase,
we take αopt = 2. In the following sections, we shall always
consider the optimal regulators. The fact that αopt changes with
T is a limitation of the derivative expansion used to solve the
flow equation (6). In the exact solution, we expect the RG flow
to reach a fixed point in the low-temperature phase regardless
of the choice of the regulator. It should be noted, however, that
a nonoptimal choice (α += αopt) leads to essentially the same
long-distance physics even though there is no fixed point. In
particular, the system exhibits algebraic order (except perhaps
at extremely large length scales). The ultimate fate of ρs,k and

TABLE II. Same as Table I but for the O(3) model.

NPRG FT [36] MC [38]

ν 0.719 0.7060(7) 0.7112(5)
η 0.0463 0.0333(3) 0.0375(5)
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FIG. 1. (Color online) ηk and ρs,k in the low-temperature phase
for α = 1.5,1.6,1.7,1.8,1.9,2 (from bottom to top in the inset of the
top figure and the reverse in the bottom inset) and a fixed temperature
T < TKT corresponding to r0 = −0.0016 (all figures are obtained
with u0/$

2 = 0.003 and $ = 1).

ηk as k → 0 (which depends on the sign of the slope of the
quasiplateau) is clearly irrelevant at macroscopic length scales
of interest [41].

The optimal value αopt ≡ αopt(ρ̃r) depends on ρ̃r, but the
universal features of the KT transition are independent of the
choice of (ρ̃r,αopt(ρ̃r)). In the low-temperature phase, when ρ̃r

is too large the propagator Gk = (%(2)
k + Rk)−1 does not remain

positive definite due to the appearance of a pole at finite k, and
the RG flow cannot be continued to lower k [35,42]. The lower
the temperature, the smaller the renormalization point should
be. We find that ρ̃r must always be smaller than the minimum
ρ̃0,k of the effective potential because, otherwise, a pole in
the propagator appears at finite RG time t . Thus, it is never
possible to choose ρ̃r = ρ̃0,k . Below a certain temperature,
even with ρ̃r = 0, it is not possible to avoid the appearance of
a pole in the propagator. The lowest temperature that can be
reached corresponds to an anomalous dimension η(T ) $ 0.17
(obtained with α = 1.45). It should be noted, however, that
the low-temperature regime T % TKT, which is dominated by
spinwave excitations, becomes trivial when one works with the
Goldstone boson (i.e., the phase of the complex field ϕ1 + iϕ2)
and there is no need to use the NPRG.

Figure 2 shows ρs,k and ηk for various temperatures below
the KT transition temperature, obtained with the optimal pa-
rameter αopt. The renormalized stiffness ρs(T ) = limk→0 ρs,k

0 5 10 150

0.1

0.2

0.3

0.4

0.5

ηk

r0 = r0c

r0 − r0c = −3.69× 10−5

0 5 10 150

0.5

1

1.5

2

2.5

3

ln(Λ/k)

ρs,k

r0 = r0c

r0 − r0c = −3.69× 10−5

FIG. 2. (Color online) Anomalous dimension ηk and stiffness
ρs,k vs ln($/k) for α = αopt and various values of r0 from r0c $
−0.0015831 to r0c − 3.69 × 10−5.

and the anomalous dimension η(T ) = limk→0 ηk are obtained
from the plateau values of ρs,k and ηk . The highest temperature
for which we find a phase with a nonzero stiffness ρs(T )
provides an estimate r0c $ −0.0015831 of the KT transition
temperature TKT. We shall discuss other determinations of TKT
in the following sections.

C. Comparison with GW

GW [19] evaluate the anomalous dimension ηk at the
flowing minimum of the effective potential while we compute
it at a fixed value of the (rescaled) field. Moreover GW do
not use the prefactor α of the infrared regulator as a free
parameter. As pointed out above, the choice ρ̃r = ρ̃0,k leads to
the appearance of a pole in the propagator at finite k. We
emphasize that this is not an accuracy problem but rather
an intrinsic feature of the flow equations in the derivative
expansion to second order. To circumvent this difficulty, GW
solve the flow equations only for a finite (scale-dependent)
range of ρ̃ values around ρ̃0,k [43]. Even though the GW
approach provides a way of computing some of the features
of the KT transition, the flow is bound to converge to the
high-temperature phase, and the line of fixed points is in fact
missing. In this respect our solution is a definite improvement.
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We compute the critical exponents ν, η and ω of O(N ) models for various values of N by implementing the
derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually
denoted O(∂4)]. We analyze the behavior of this approximation scheme at successive orders and observe an
apparent convergence with a small parameter, typically between 1

9 and 1
4 , compatible with previous studies in

the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents
with a precision which is similar or better than those obtained by most field-theoretical techniques. We also
reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case,
where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat
exponent α, our results are compatible with those of Monte Carlo but clearly exclude experimental values.

DOI: 10.1103/PhysRevE.101.042113

I. INTRODUCTION

Systems where microscopic degrees of freedom are
strongly coupled are notoriously difficult to analyze theo-
retically. This difficulty becomes even more involved if the
system is near a critical point because of the large number
of interacting degrees of freedom that must be treated si-
multaneously. From the theoretical viewpoint, two methods
are widely used to study these physical situations. The first
one was introduced by Wilson: the renormalization group
(RG) [1]. This technique, when used in conjunction with
perturbation theory, is able to describe systems with many
interacting degrees of freedom with a small or moderate
effective coupling among infrared degrees of freedom. The
perturbative implementation of the RG [2,3] has become an
efficient method both in statistical physics and in quantum
field theory when very different scales are present [4]. In
the realm of statistical physics, it has been used to describe
both equilibrium and out-of-equilibrium situations, it can deal
with quenched disorder, long range interactions, etc. A main
limitation of this approach is that it is based on an expansion
in some small coupling and it cannot be applied to systems
where no such small parameter is known. Moreover, the alge-
braic complexity of the calculation strongly increases with the
order of the expansion. Due to this complexity, only recently
progress has been made [5] and the perturbative series have
been pushed to seven loops. Another limitation of perturbative
RG is that the series do not converge in general and one has
to resort to some resummation techniques in order to make
precise predictions. These techniques always involve some
unknown parameters that must be fixed by using some extra

*gdepolsi@fisica.edu.uy

criterion, such as the principle of minimal sensitivity or the
principle of fastest apparent convergence (see below).

The other popular theoretical approach to critical systems
is computer simulations [6]. A major asset of these techniques
is their versatility: they can be applied to a large number of
situations, at criticality or away from criticality, even when
perturbative RG treatment might be very difficult. At a quan-
titative level, high precision estimates of the critical exponents
were obtained by these methods (see [3] for a review). A ma-
jor drawback is that it can require extremely large amounts of
computer time, and statistical and systematic errors only de-
crease slowly with the size of the simulation. To give an exam-
ple, for the Monte Carlo studies of criticality of the pure Ising
model, which are considered to be the most favorable case nu-
merically, the most extensive numerical study [7] reaches lat-
tice sizes of L = 300 in three dimensions (3D), for which 30
years of CPU time are needed. In the case of the most recent
simulation on the XY model [8], on which we comment later
on, the numerical effort is approximately four times bigger.

There also exist methods which apply only to some partic-
ular physical situations. Among these, let us cite the large-N
expansion, high- and low-temperature expansions. The other
method of choice for studying critical exponents uses confor-
mal field theory [9,10] which can be applied to a variety of
systems at equilibrium in their critical regime, which present,
on top of scale invariance, the whole conformal group. These
methods were first developed in the bidimensional case but
were more recently applied to higher dimensions, through the
conformal bootstrap (CB) program [11–13]. This led in the re-
cent past to an unprecedented precision on critical exponents
for the Ising model. Such methods are, however, unable to
access other quantities of physical interest, such as a phase
diagram.
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TABLE IV. Final results at various orders of the DE with ap-
propriate error bars for N = 1 in d = 3. Results for η and ν are
taken from [19]. Results of the CB ([13] for η and ν and [51] for
ω), MC [7], high-temperature expansion [52], and six-loop, d = 3
perturbative RG values [2], and ε expansion at order ε5 [2] and at
order ε6 [50] are also given for comparison.

ν η ω

LPA 0.64956 0 0.654
O(∂2) 0.6308(27) 0.0387(55) 0.870(55)
O(∂4) 0.62989(25) 0.0362(12) 0.832(14)
O(∂6) 0.63012(16) 0.0361(11)

CB 0.629971(4) 0.0362978(20) 0.82968(23)
Six-loop, d = 3 0.6304(13) 0.0335(25) 0.799(11)
ε expansion, ε5 0.6290(25) 0.0360(50) 0.814(18)
ε expansion, ε6 0.6292(5) 0.0362(6) 0.820(7)
High T 0.63012(16) 0.03639(15) 0.83(5)
MC 0.63002(10) 0.03627(10) 0.832(6)

universality class, presented in Table IV. It is worth stressing
that the results are very precise (particularly for ν and ω). At
first sight one could get the impression that the order O(∂6)
does not improve the results significantly with respect to order
O(∂4) for η and ν. However, this only reflects our poorer
experience on the behavior of the DE at order O(∂6) and
the consequent use of a much more pessimistic estimate of
central values and error bars. In fact, by looking directly at the
raw data presented in Table I one observes that the DE does
give better estimates for any regulator at successive orders,
including order O(∂6).

Another strategy in order to estimate central values fol-
lowed in Ref. [19] is to exploit the whole series of data for
a given exponent in order to extrapolate the central value
and error bars. This strategy gives better estimates of central
values and a smaller error bar. However, we follow here a
strategy that can be implemented for O(N ) models where we
only have at our disposal the results for the DE up to order
O(∂4). More generally, we propose a general method that can
be employed safely for very general models where, in most
cases, the DE has only been studied up to order O(∂2).

B. Controversial N = 2 case: Derivative expansion take

The N = 2 case describes the important XY universality
class that corresponds to many physical systems, including
easy plane magnetic systems and the λ transition of the
helium-4 superfluid. For a classical review of various systems
in this universality class, we refer to [3]. The O(2) case is par-
ticularly important because, as discussed in the Introduction,
there is a long-standing controversy concerning the value of
the critical exponent ν between the most precise experiments7

[23] and the best theoretical estimates given by some MC
simulations [54,55] and very recent CB results [24]. Most

7Indeed, the critical exponent that is actually measured is the
specific heat exponent α for the transition of the superfluid helium-
4, that can be related to ν by a hyperscaling relation. See also [53]
for estimations of the specific heat of helium-4.

TABLE V. Final results at various orders of the DE with appro-
priate error bars for N = 2 in d = 3. Results to the CB from 2016
([56] for η and ν and [58] for ω) and also from 2019 [24], combined
MC and high-temperature analysis from [54] and recent (2019) MC
from [8], and six-loop, d = 3 perturbative RG values [2], and ε

expansion at order ε5 [2] and order ε6 [50] are also given for compari-
son. Results for most precise experiments are also included: helium-4
superfluid from [23,59] for ν, XY antiferromagnets (CsMnF3 from
[60] and SmMnO3 from [61]), and XY ferromagnets (Gd2IFe2 and
Gd2ICo2 from [62]). Whenever needed, scaling relations are used in
order to express results in terms of η and ν.

ν η ω

LPA 0.7090 0 0.672
O(∂2) 0.6725(52) 0.0410(59) 0.798(34)
O(∂4) 0.6716(6) 0.0380(13) 0.791(8)

CB (2016) 0.6719(12) 0.0385(7) 0.811(19)
CB (2019) 0.6718(1) 0.03818(4) 0.794(8)
Six-loop, d = 3 0.6703(15) 0.0354(25) 0.789(11)
ε expansion, ε5 0.6680(35) 0.0380(50) 0.802(18)
ε expansion, ε6 0.6690(10) 0.0380(6) 0.804(3)
MC+High T (2006) 0.6717(1) 0.0381(2) 0.785(20)
MC (2019) 0.67169(7) 0.03810(8) 0.789(4)

Helium-4 (2003) 0.6709(1)
Helium-4 (1984) 0.6717(4)
XY -AF (CsMnF3) 0.6710(7)
XY -AF (SmMnO3) 0.6710(3)
XY -F (Gd2IFe2) 0.671(24) 0.034(47)
XY -F (Gd2ICo2) 0.668(24) 0.032(47)

field-theoretical methods [2,56] (including CB before [24])
have been unable to settle the issue because of the high level of
precision reached by experiments and simulations. Indeed, as
discussed in [55], there is even a discrepancy among various
MC results that in some cases give results compatible with
experiments [57], but a consensus seems to have been reached
that the most precise simulations [8,54,55] are very far away
from the experimental prediction. We present now our O(∂4)
DE estimate of critical exponents η, ν, and ω.

The raw data for these exponents obtained at successive
orders of the DE for the same regulators mentioned in the
previous section are presented in Appendix A. We also in-
cluded in this table the previous results obtained with the DE.
As for N = 1, for all considered families of regulators the
concavity of the curves of exponents η and ν as a function
of the parameter α alternates (see Fig. 3). Moreover, the
results at successive orders of the DE are disjoint, which
strongly indicates alternating bounds on the critical exponents
at this order of the DE. Accordingly, we employ the improved
estimate of central values and error bars presented in Sec. IV B
for those exponents. The corresponding results are presented
in Table V where they are compared to other results in the
literature both theoretical and experimental. Special attention
must be given to the exponent ω where it is seen in Fig. 3
that the results at order (∂2) and (∂4) intersect. Moreover,
the LPA curve, which is below the O(∂2) one, presents a
minimum, not a maximum. The various orders of the DE
definitely do not give bounds on that exponent. We therefore
use for this exponent the more conservative estimate of error
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t(�̄) +

✓
1� 1

N

◆
�̄

�̄+ Ū 0
t(�̄)

+
1

N

1

1 + Ū 00
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Wilson-Polchinski version  
of NPRG 

2

of the theory: �⇤ ⇠ H, and the Gibbs free energy � of
the original model when k = 0: �k=0 = �. The exact
RG flow equation of �k gives the evolution of �k with k
between these two limiting cases and reads [13]:

@t�k[�] =
1

2
Tr[@tRk(q

2)(�(2)
k [q,�q;�] +Rk(q))

�1] (3)

where t = log(k/⇤), Tr stands for an integral over q and

a trace over group indices and �(2)
k [q,�q;�] is the matrix

of the Fourier transforms of �2�k/��i(x)��j(y).
In most cases, Eq.(3) cannot be solved exactly and

approximations are mandatory. The best known approx-
imation consists in expanding �k in powers of r�i and to
truncate the expansion at a given finite order[8, 16–24].
The approximation at lowest order is dubbed the local
potential approximation (LPA). For the O(N) model it
consists in approximating �k by:

�k[�] =

Z

x
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◆
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where, by definition, � =
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The usual large N limit of the LPA flow [7] is obtained by
(i) replacing the factor N�1 by N , (ii) dropping the last
term in Eq.(5) because it is assumed to be sub-leading
compared to the term proportional to N , (iii) rescaling
the field by a factor

p
N and the potential by a factor N :

�̄ = �̃/
p
N , Ū = Ũ/N . As a consequence of these three

steps, the explicit dependence in N of the LPA flow of
Ū(�̄) disappears in the large N limit. The crucial point
is that the resulting LPA equation on Ū can be shown to
be exact in the limit N ! 1 [6]. Thus, the problem of
finding all FPs of the O(N) model: @tŪt(�̄) = 0 in the
limit N ! 1 boils down to solving the LPA FP equation
on Ū(�̄) having dropped the last term in Eq.(5). This
has been done in detail in several papers [7, 25]. The
result is the following: In a generic dimension d < 4
and apart from the gaussian FP, there is only one FP
which is the usual Wilson-Fisher FP. The exception to
the rule above occurs in the dimensions dc = 2+2/n with
n = 1, 2, · · · where there is also a line of FPs starting at
the gaussian FP and terminating at the Bardeen-Moshe-
Bander (BMB) FP[26–29].

We now show that the procedure described above is
too restrictive and eliminates some FPs that are physi-
cally relevant. The point is that the last term in Eq.(5),
which represents the contribution of the longitudinal

mode, is negligible compared to the term proportional
to N � 1, the contribution of the transverse modes, only
if it reaches a finite limit when N ! 1. We show that
this is not necessarily the case and that the last term
in Eq.(5) can also be of order N and can thus be non
negligible.
It is convenient for what follows to change variables.

Following ref. [30], we define: V (µ) = U(�)+ (���)2/2
with µ = �2 and � � � = �2�V 0(µ). As above, it is
convenient to rescale µ and V (µ): µ̄ = µ/N , V̄ = V/N .
In terms of these quantities, the FP equation for V̄ (µ̄)
following from Eq.(5) reads

0 = 1� d V̄ + (d� 2)µ̄V̄ 0 + 4µ̄V̄ 02 � 2V̄ 0 � 4

N
µ̄ V̄ 00. (6)

This equation has two remarkable features. First, it is
much simpler than Eq.(5) because the nonlinearity comes
only from the (V̄ 0)2 term. Second, its physical interpre-
taion is simple: it is the LPA equation obtained from
the Wilson-Polchinski version of the NPRG [31–34]: V
and U are therefore related by the Legendre transform
Eq.(2). Eq.(6) has therefore also been widely studied in
the literature. The usual large N analysis performed in
this version of the NPRG consists here again in neglect-
ing the last term in Eq.(6) because it is suppressed by a
factor 1/N [35]. Under the assumption that this term is
indeed negligible in the large N limit, the resulting equa-
tion becomes independent of N and an exact (implicit)
solution of this equation is known (see Supplemental Ma-
terial). However, at large N , it is clear on Eq.(6) that we
have to deal with singular perturbation theory since the
small parameter used for the expansion, that is, 1/N , is
in front of the term of highest derivative, that is, V̄ 00. In
this case, it is well-known that in general the term pro-
portional to V̄ 00 cannot be neglected and that singular
solutions can exist at ✏ = 1/N ! 0 [36]. Put it di↵er-
ently, at finite but large values of N , a boundary layer
can exist for a particular value of the argument µ̄ that
becomes a singularity at N = 1. We now show that this
is what indeed occurs.
It is particularly simple to understand on Eq.(6) why

and how at N = 1 a solution exhibiting an isolated
singularity for a given µ̄ = µ̄0 can exist. Consider the
intervals on the left and on the right of µ̄0. On these
intervals, V̄ (µ̄) is regular by definition. This implies that
the last term in Eq.(6) can safely be neglected at large
N on these two intervals. To get a singularity where
this term can play a role in (6) at N = 1, it is neces-
sary that the solutions on the left and on the right of µ̄0

match at µ̄0 but with two di↵erent slopes. It is trivial to
build such a solution: Take on the right of µ̄0 the Wilson-
Fisher solution of Eq.(6) (without the last term) and on
the left V̄ (µ̄) = µ̄/2 which is a trivial solution of (6).
The matching point is then trivially found numerically
as the intersection of these two curves (see Fig.3 in the
Supplemental Material). Then, at finite N , the boundary
layer around µ̄0 where the left and right solutions match
smoothly (but abruptly) can be easily computed at lead-
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of the theory: �⇤ ⇠ H, and the Gibbs free energy � of
the original model when k = 0: �k=0 = �. The exact
RG flow equation of �k gives the evolution of �k with k
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and Ũk(�̃) = v�1
d k�dUk (�) with v�1

d = 2d�1d⇡d/2�(d2 ).

The LPA flow of Ũk reads:
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t(�̃)+

(N � 1)
�̃

�̃+ Ũ 0
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and Ũk(�̃) = v�1
d k�dUk (�) with v�1

d = 2d�1d⇡d/2�(d2 ).

The LPA flow of Ũk reads:
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t(�̃)+

(N � 1)
�̃

�̃+ Ũ 0
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�̄ = �̃/
p
N , Ū = Ũ/N . As a consequence of these three

steps, the explicit dependence in N of the LPA flow of
Ū(�̄) disappears in the large N limit. The crucial point
is that the resulting LPA equation on Ū can be shown to
be exact in the limit N ! 1 [6]. Thus, the problem of
finding all FPs of the O(N) model: @tŪt(�̄) = 0 in the
limit N ! 1 boils down to solving the LPA FP equation
on Ū(�̄) having dropped the last term in Eq.(5). This
has been done in detail in several papers [7, 25]. The
result is the following: In a generic dimension d < 4
and apart from the gaussian FP, there is only one FP
which is the usual Wilson-Fisher FP. The exception to
the rule above occurs in the dimensions dc = 2+2/n with
n = 1, 2, · · · where there is also a line of FPs starting at
the gaussian FP and terminating at the Bardeen-Moshe-
Bander (BMB) FP[26–29].

We now show that the procedure described above is
too restrictive and eliminates some FPs that are physi-
cally relevant. The point is that the last term in Eq.(5),
which represents the contribution of the longitudinal

mode, is negligible compared to the term proportional
to N � 1, the contribution of the transverse modes, only
if it reaches a finite limit when N ! 1. We show that
this is not necessarily the case and that the last term
in Eq.(5) can also be of order N and can thus be non
negligible.
It is convenient for what follows to change variables.

Following ref. [30], we define: V (µ) = U(�)+ (���)2/2
with µ = �2 and � � � = �2�V 0(µ). As above, it is
convenient to rescale µ and V (µ): µ̄ = µ/N , V̄ = V/N .
In terms of these quantities, the FP equation for V̄ (µ̄)
following from Eq.(5) reads

0 = 1� d V̄ + (d� 2)µ̄V̄ 0 + 4µ̄V̄ 02 � 2V̄ 0 � 4

N
µ̄ V̄ 00. (6)

This equation has two remarkable features. First, it is
much simpler than Eq.(5) because the nonlinearity comes
only from the (V̄ 0)2 term. Second, its physical interpre-
taion is simple: it is the LPA equation obtained from
the Wilson-Polchinski version of the NPRG [31–34]: V
and U are therefore related by the Legendre transform
Eq.(2). Eq.(6) has therefore also been widely studied in
the literature. The usual large N analysis performed in
this version of the NPRG consists here again in neglect-
ing the last term in Eq.(6) because it is suppressed by a
factor 1/N [35]. Under the assumption that this term is
indeed negligible in the large N limit, the resulting equa-
tion becomes independent of N and an exact (implicit)
solution of this equation is known (see Supplemental Ma-
terial). However, at large N , it is clear on Eq.(6) that we
have to deal with singular perturbation theory since the
small parameter used for the expansion, that is, 1/N , is
in front of the term of highest derivative, that is, V̄ 00. In
this case, it is well-known that in general the term pro-
portional to V̄ 00 cannot be neglected and that singular
solutions can exist at ✏ = 1/N ! 0 [36]. Put it di↵er-
ently, at finite but large values of N , a boundary layer
can exist for a particular value of the argument µ̄ that
becomes a singularity at N = 1. We now show that this
is what indeed occurs.
It is particularly simple to understand on Eq.(6) why

and how at N = 1 a solution exhibiting an isolated
singularity for a given µ̄ = µ̄0 can exist. Consider the
intervals on the left and on the right of µ̄0. On these
intervals, V̄ (µ̄) is regular by definition. This implies that
the last term in Eq.(6) can safely be neglected at large
N on these two intervals. To get a singularity where
this term can play a role in (6) at N = 1, it is neces-
sary that the solutions on the left and on the right of µ̄0

match at µ̄0 but with two di↵erent slopes. It is trivial to
build such a solution: Take on the right of µ̄0 the Wilson-
Fisher solution of Eq.(6) (without the last term) and on
the left V̄ (µ̄) = µ̄/2 which is a trivial solution of (6).
The matching point is then trivially found numerically
as the intersection of these two curves (see Fig.3 in the
Supplemental Material). Then, at finite N , the boundary
layer around µ̄0 where the left and right solutions match
smoothly (but abruptly) can be easily computed at lead-

We have to deal with singular perturbation in general.

LPA FP eq.

Rescaling in N

Transformation of the variables

(U,�) ! (V,�)

<latexit sha1_base64="YyBaV8/QhS2wMBDSioBS7IEugcs="></latexit>

1/N A small parameter
<latexit sha1_base64="Z0fKUFW19tkqY/NFSobkHpTZc8Y="></latexit>

V̄ 00 The highest order derivative



Usual large-N limit in the Wilson-
Polchinski parametrization

• In generic dimensions , it has three solutions: 
Gaussian FP (G),  Wilson Fisher FP (WF) and linear FP                    　
　　　　　 (discontinuity FP). 

• In dimensions  with odd integer ,  
term is marginal around G and a line of FPs starting 
from G and terminating at BMB FP appears.

2 < d < 4

d = 2 + 2/p p > 0 (φ2)p+1

7

At criticality, the model is self-similar and the RG flow reaches a FP if it is expressed in terms of dimensionless
quantities. We proceed as usual by rescaling fields and coordinates according to x̃ = kx, �̃(x̃) = v�1/2

d k(2�d)/2Z̄1/2
k �(x)

and Ũk(⇢̃) = v�1
d k�dUk(⇢). The LPA flow of the potential Ũk(�̃) is given by Eq. (4) and becomes in the large N limit

the one given by Eq. (5) under the assumption that the last term in Eq. (4) is negligible. In this limit, it can be
shown that if this last term is indeed negligible then the LPA equation becomes exact in the large N limit because the
coupling between Ũk(�̃) and the other functions such as Zk(⇢) and Yk(⇢) is subleading. The usual field and potential
rescalings is given in Eq. (6) and the flow thus reads:

@tŪt(�̄) = �d Ūt +
1

2
(d� 2)�̄ Ū 0

t +

✓
1� 1

N

◆
�̄

�̄+ Ū 0
t

+
1

N

1

1 + Ū 00
t

. (18)

As shown in Eq. (13), the potential Uk=⇤ is the bare potential given by the hamiltonian of the model. This yields
the boundary condition at t = 0 necessary to solve unambiguously Eq. (18). In the large N limit and again under
the hypothesis that the last term is negligible in this limit, it becomes Eq. (8).

B. Wilson-Polchinski approach

Another formulation of the NPRG is the approach à la Wilson-Polchinski (W-P) based on running effective Hamil-
tonians instead of running Gibbs free energies [45], see Appendix A for details. What is important for what follows
is that, as pointed out by Morris [46], there is an exact mapping between LPAs in W-P and in Ellwanger-Morris-
Wetterich versions of the RG when the cutoff in Eq. (10) is used (the LPA is universal in the W-P version, that is, is
independent of the function Rk). Here we denote the potential part of the effective Hamiltonian in W-P approach by
V (%) and Ṽ (%̃) its dimensionless analog which is a function of the dimensionless field %̃. Then, the mapping is given
by:

Ṽ (%̃) = Ũ(⇢̃) + (�̃i � �̃i)
2/2 and �̃i � �̃i = ��̃iṼ

0(%̃) = ��̃iŨ
0(⇢̃) (19)

with %̃ = �̃i�̃i/2 [46]. We then perform the same rescaling as in Eq. (6):

%̄ =
%̃

N
, V̄t(%̄) =

Ṽt(%̃)

N
. (20)

With these changes of variables, the LPA FP equation (18) in Ellwanger-Morris-Wetterich version of the RG is
transformed into the LPA in the W-P parametrization [45, 47, 48] which is given by:

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00. (21)

IV. THE LARGE N LIMIT REVISITED: NEW FIXED POINTS, BOUNDARY LAYERS AND CUSPS

We show below that the usual large N approaches described in section II are too restrictive and miss several FPs
that are relevant to the multicritical physics of O(N) models. As already explained in Section II, the problem is that
some FP potentials that are physically relevant show singularities when N = 1. It turns out that the analysis of
these singularities is by far simpler in W-P than in Ellwanger-Morris-Wetterich version of the RG and we therefore
switch to the former from now on.

A. The usual large N limit in the functional RG

The LPA FP equation on the potential is given in the Ellwanger-Morris-Wetterich version of the RG by Eq. (7)
when the regulator of Eq. (10) is used. It becomes Eq. (21) in the W-P version of the RG.

In the usual large N approach, the FP potential Ū(⇢̄) is assumed to be smooth for all values of the field when
N ! 1. Thus, the last term in Eq. (7) is neglected since its prefactor is of order 1/N . The resulting equation has
been shown to be exact in this limit [12] which means that although the free energy �k[�] involves terms other than
Uk(⇢), see Eq. (15), the exact flow equation for the potential at N = 1 is given by Eq. (8). Its analogue in the W-P
version of the NPRG is also obtained by neglecting the term with a 1/N prefactor but this time in Eq. (21). It reads:

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0. (22)
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FIG. 3: d = 3 and N = 1: (Left) Some tricritical potentials of the A(⌧) FPs along the BMB line (blue) together
with the Wilson-Fisher FP potential (red) that are solutions of Eq. (21). The gaussian FP G corresponds to the
horizontal line and all FP potentials along the BMB line are continuous deformations of G. The BMB FP is the

end-point of the BMB line (purple): It involves a linear part for % 2 [0, %0] and shows a discontinuity in its second
derivative at %̄0, see the right panel. All these potentials are given by Eq. (23) (in the Wilson-Polchinski version of

the LPA flow). (Right) Derivatives of the A(⌧) FP potentials of the BMB line (blue). The BMB FP potential
(purple) shows a discontinuity in its second derivative at %̄ = %̄0.

Apart from the gaussian FP G, this equation is known to have two smooth solutions defined for all %̄ � 0 in
generic dimensions 2 < d < 4: the WF FP solution, whose analytic expression has been derived in [49] and the high
temperature FP V̄ (%̄) = %̄ [50].

Notice that the dimensions dc = 2 + 2/p with p 2 N⇤ are exceptional. In these dimensions, the ('2)p+1 term
becomes marginal and at N = 1, takes place the BMB phenomenon that has no counterpart in generic dimensions
[51–53]. For example, for p = 2, that is, d = 3, there exists a line of tricritical FPs at N = 1 called the BMB line of
FPs. The complete set of regular solutions of Eq. (22) in d = 3 are given by the following implicit expression [54]:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (23)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an integration

constant. They consist in (i) the gaussian FP G obtained for ⌧ = 0 for which V̄ 0(%̄) = 0, (ii) a set of well-defined
solutions V̄ (%̄) indexed by ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which correspond to the BMB line of FPs and denoted here by
A(⌧), with the BMB FP obtained at ⌧ = ⌧ BMB being the endpoint of the line [51, 53–56], (iii) an isolated solution
associated with

p
2/⌧ = 0 which corresponds to the Wilson-Fisher FP (an analytic continuation is needed when

V 0 < 0). Notice that for ⌧ > ⌧ BMB the solutions of Eq. (23) are not defined on the whole interval %̄ 2 [0,1[ [54].
The potentials of the A(⌧) FPs with ⌧ < ⌧ BMB are regular for all values of the field. Approaching ⌧BMB, the FP
potential approaches a limiting shape which shows a singularity: It is made of a linear part V̄ (%̄) = %̄ starting at
%̄ = 0 up to the point %̄0 where this straight line crosses the nontrivial part of the potential, see Fig. 3. The BMB FP
potential is obtained as this limiting shape. Notice that the linear part of the BMB FP potential existing for %̄ < %̄0,
see Figs. 3 can be replaced by a smooth analytic continuation of the other part of the potential, that is, the part
corresponding to %̄ > %̄0, without having any physical consequence. This can be most easily realized by going to the
Ellwanger-Morris-Wetterich version of the flow where this linear part is entirely mapped onto the point �̄ = 0 [54].
The RG flow is given in Appendix C where the BMB line together with the WF FP are provided.

B. Explicit construction of the new FPs SWF2 and SG3 at N = 1 in d > 3 in the Wilson-Polchinski approach

The problem with the usual large N approach is particularly clear on Eqs. (21) and (22): It is well known from
singular perturbation theory that when the small expansion-parameter, that is, 1/N in our case, multiplies the term
of highest derivative, that is, V̄ 00, it is not legitimate in general to neglect this term in the limit where the small
parameter goes to zero [57]. Thus, the limit N ! 1 has to be taken with care because a boundary layer that becomes
an isolated singularity in the large N limit can exist, see below. One possibility to derive the correct large N limit
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Tricritical FP solutions in  
and at   in LPA

d = 3

N = ∞

•             …Gaussian (G) FP 

•                                        …  FPs on the BMB line 

•                   …No FP defined for all 

•                 …Wilson-Fisher (WF) FP

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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Uk(�) = �k[�] where � is a constant field. Then, the flow
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branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
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nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]
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N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:
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where %̄+
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V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.
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N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
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correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):
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This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,
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where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
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branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for
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2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):
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This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,
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Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
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that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
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⌧BMB, the FP potentials approach a limiting shape which
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Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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FIG. 3: d = 3 and N = 1: (Left) Some tricritical potentials of the A(⌧) FPs along the BMB line (blue) together
with the Wilson-Fisher FP potential (red) that are solutions of Eq. (21). The gaussian FP G corresponds to the
horizontal line and all FP potentials along the BMB line are continuous deformations of G. The BMB FP is the

end-point of the BMB line (purple): It involves a linear part for % 2 [0, %0] and shows a discontinuity in its second
derivative at %̄0, see the right panel. All these potentials are given by Eq. (23) (in the Wilson-Polchinski version of

the LPA flow). (Right) Derivatives of the A(⌧) FP potentials of the BMB line (blue). The BMB FP potential
(purple) shows a discontinuity in its second derivative at %̄ = %̄0.

Apart from the gaussian FP G, this equation is known to have two smooth solutions defined for all %̄ � 0 in
generic dimensions 2 < d < 4: the WF FP solution, whose analytic expression has been derived in [49] and the high
temperature FP V̄ (%̄) = %̄ [50].

Notice that the dimensions dc = 2 + 2/p with p 2 N⇤ are exceptional. In these dimensions, the ('2)p+1 term
becomes marginal and at N = 1, takes place the BMB phenomenon that has no counterpart in generic dimensions
[51–53]. For example, for p = 2, that is, d = 3, there exists a line of tricritical FPs at N = 1 called the BMB line of
FPs. The complete set of regular solutions of Eq. (22) in d = 3 are given by the following implicit expression [54]:
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where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an integration

constant. They consist in (i) the gaussian FP G obtained for ⌧ = 0 for which V̄ 0(%̄) = 0, (ii) a set of well-defined
solutions V̄ (%̄) indexed by ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which correspond to the BMB line of FPs and denoted here by
A(⌧), with the BMB FP obtained at ⌧ = ⌧ BMB being the endpoint of the line [51, 53–56], (iii) an isolated solution
associated with

p
2/⌧ = 0 which corresponds to the Wilson-Fisher FP (an analytic continuation is needed when

V 0 < 0). Notice that for ⌧ > ⌧ BMB the solutions of Eq. (23) are not defined on the whole interval %̄ 2 [0,1[ [54].
The potentials of the A(⌧) FPs with ⌧ < ⌧ BMB are regular for all values of the field. Approaching ⌧BMB, the FP
potential approaches a limiting shape which shows a singularity: It is made of a linear part V̄ (%̄) = %̄ starting at
%̄ = 0 up to the point %̄0 where this straight line crosses the nontrivial part of the potential, see Fig. 3. The BMB FP
potential is obtained as this limiting shape. Notice that the linear part of the BMB FP potential existing for %̄ < %̄0,
see Figs. 3 can be replaced by a smooth analytic continuation of the other part of the potential, that is, the part
corresponding to %̄ > %̄0, without having any physical consequence. This can be most easily realized by going to the
Ellwanger-Morris-Wetterich version of the flow where this linear part is entirely mapped onto the point �̄ = 0 [54].
The RG flow is given in Appendix C where the BMB line together with the WF FP are provided.

B. Explicit construction of the new FPs SWF2 and SG3 at N = 1 in d > 3 in the Wilson-Polchinski approach

The problem with the usual large N approach is particularly clear on Eqs. (21) and (22): It is well known from
singular perturbation theory that when the small expansion-parameter, that is, 1/N in our case, multiplies the term
of highest derivative, that is, V̄ 00, it is not legitimate in general to neglect this term in the limit where the small
parameter goes to zero [57]. Thus, the limit N ! 1 has to be taken with care because a boundary layer that becomes
an isolated singularity in the large N limit can exist, see below. One possibility to derive the correct large N limit

ϱ̄ = μ̄/2
G FP

Not analytic 
hereϱ̄+ ⤏ ϱ̄ > 1

ϱ̄− ⤏ ϱ̄ < 1



Nonanalicity of BMB FP

•  becomes discontinuous at .  

• In Wetterich parametrization, the nonanalicity corresponds to a 
cusp-like behavior 

d2V̄/dρ̄2 ϱ̄ = ϱ̄0

Ū(ϕ̄) ∼ const |ϕ |
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FIG. 3: d = 3 and N = 1: (Left) Some tricritical potentials of the A(⌧) FPs along the BMB line (blue) together
with the Wilson-Fisher FP potential (red) that are solutions of Eq. (21). The gaussian FP G corresponds to the
horizontal line and all FP potentials along the BMB line are continuous deformations of G. The BMB FP is the

end-point of the BMB line (purple): It involves a linear part for % 2 [0, %0] and shows a discontinuity in its second
derivative at %̄0, see the right panel. All these potentials are given by Eq. (23) (in the Wilson-Polchinski version of

the LPA flow). (Right) Derivatives of the A(⌧) FP potentials of the BMB line (blue). The BMB FP potential
(purple) shows a discontinuity in its second derivative at %̄ = %̄0.

Apart from the gaussian FP G, this equation is known to have two smooth solutions defined for all %̄ � 0 in
generic dimensions 2 < d < 4: the WF FP solution, whose analytic expression has been derived in [49] and the high
temperature FP V̄ (%̄) = %̄ [50].

Notice that the dimensions dc = 2 + 2/p with p 2 N⇤ are exceptional. In these dimensions, the ('2)p+1 term
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[51–53]. For example, for p = 2, that is, d = 3, there exists a line of tricritical FPs at N = 1 called the BMB line of
FPs. The complete set of regular solutions of Eq. (22) in d = 3 are given by the following implicit expression [54]:
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constant. They consist in (i) the gaussian FP G obtained for ⌧ = 0 for which V̄ 0(%̄) = 0, (ii) a set of well-defined
solutions V̄ (%̄) indexed by ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which correspond to the BMB line of FPs and denoted here by
A(⌧), with the BMB FP obtained at ⌧ = ⌧ BMB being the endpoint of the line [51, 53–56], (iii) an isolated solution
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V 0 < 0). Notice that for ⌧ > ⌧ BMB the solutions of Eq. (23) are not defined on the whole interval %̄ 2 [0,1[ [54].
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In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:
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where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:
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branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for
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2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].
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within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
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where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at
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I. PLOT OF V̄
0 AND SINGULARITY OF THE BMB FP POTENTIAL

In Fig.1 of the main text, for ⌧ = ⌧BMB, V̄ (%̄) has a discontinuous curvature that is not very visible. We thus choose
to plot V̄ 0 as a function of %̄:

FIG. S1. Potentials V̄
0(%̄) of the tricritical FPs A(⌧) = {A(⌧), Ã(⌧)} of the BMB line (blue). The BMB FP is the endpoint

of the BMB line (purple). The second derivative V̄
00(%̄) of the potential of the BMB FP shows a discontinuity in its second

derivative at %̄ = %̄0.

II. PLOT OF ⌧ AS A FUNCTION OF ↵

We plot here the relation between ⌧ and ↵ as a visual means of understanding how the finite N FPs A2(↵) and
Ã3(↵) relate to the BMB line A(⌧)
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FIG. S2. ⌧ on the BMB line at N = 1 as a function of ↵ = (d� 3)N within the LPA approximation of the NPRG formalism.
The two branches given by A and Ã give the limits when N ! 1 of the two FPs at finite but large N , namely A2(↵) and
Ã3(↵). Both branches meet at ↵ = ↵c = 3.375 and the upper branch Ã extends to the point (↵BMB, ⌧BMB) ' (0.51, 0.36)

3

In practice, computing the flow of the potential Uk

requires several steps. First, the potential is defined by:
Uk(�) = �k[�] where � is a constant field. Then, the flow
of Uk(�) is obtained by acting with @t on both sides of
the above definition of Uk and by using Eq. (4). Finally,

�(2)
k in the right hand side of Eq. (4) is computed from

the LPA ansatz, Eq. (5).
It is very convenient for the following to make a change

of variables that simplifies considerably the study of the
large N limit. This change of variables is equivalent to
working with the Wilson-Polchinski flow instead of the
flow of �k, hereafter called the Wetterich flow. Following

Ref. [45], we define: Ṽ (%̃) = Ũ(⇢̃) +
⇣
�̃i � �̃i

⌘2
/2 with

%̃ = �̃i�̃i/2 = �̃2/2 and �̃i��̃i = ��̃iṼ 0(%̃) = ��̃iŨ 0(⇢̃).
It is convenient to rescale %̃ and Ṽ (%̃) as usual: %̄ =
%̃/N , V̄ = Ṽ /N . The FP equation for V̄ (%̄) thus reads
[8, 25, 45]

0 = 1� d V̄ + (d� 2)%̄V̄ 0 + 2%̄V̄ 02 � V̄ 0 � 2

N
%̄ V̄ 00 (6)

where the primes mean derivatives with respect to %̄.
Here again, the usual N ! 1 limit consists in assuming
that V̄ (%̄) is regular for all %̄ and thus in discarding the
last term in Eq. (6) because of its 1/N prefactor. In d = 3
andN = 1, there are infinitely many solutions to Eq. (6)
in which the last term has been discarded [1, 8, 9, 46].
They are given by the following implicit expression valid
for the physical solutions of interest here:

%̄± = 1 +
V̄ 0 � 5

2 � V̄ 0�
�
1� V̄ 0

�2 +
3
2 arcsin

p
V̄ 0 ±

p
2/⌧

�
V̄ 0

��1/2 �
1� V̄ 0

�5/2 (7)

where %̄+
�
V̄ 0� and %̄�

�
V̄ 0� correspond to the two

branches %̄ > 1 and %̄ < 1 respectively, and ⌧ is an in-
tegration constant. A detailed analysis of Eq. (7) shows
that (i) the gaussian FP G for which V̄ 0(%̄) = 0 is ob-
tained for ⌧ = 0, (ii) a well-defined solution V̄ (%̄) ex-
ists for all ⌧ 2 [0, ⌧ BMB = 32/(3⇡)2] which therefore
corresponds to the BMB line of FPs, denoted here by
A(⌧), with the BMB FP being the endpoint obtained for
⌧ = ⌧ BMB as in [1, 6–9], (iii) for ⌧ > ⌧ BMB the solutions
of Eq. (7) are not defined on the whole interval %̄ 2 [0,1[
[8], (iv) an isolated solution exists for

p
2/⌧ = 0 which

corresponds to the Wilson-Fisher FP associated with the
usual second order phase transition of the O(N = 1)
model (an analytic continuation is needed when V 0 < 0).
All the FPs corresponding to a value of ⌧ 2 [0, ⌧ BMB[
are twice unstable in the infrared and are tricritical. We
plot their potential in Fig. 1. One observes that, for
all ⌧ < ⌧BMB, the FP potentials V̄⌧ (%̄) along the BMB
line are regular for all values of the field. Approaching
⌧BMB, the FP potentials approach a limiting shape which
shows a singularity at a value %̄0 in its second derivative,
see Fig. 1 and a detailed description below (see also Fig.
1 of the Supplemental Material) [47]. Notice that in the
Wetterich version of the flow [36, 40], the potential of the
BMB FP shows a singularity at vanishing field [9].

FIG. 1. Potentials V̄ (%̄) of the tricritical FPs A(⌧) of the
BMB line (blue) together with the Wilson-Fisher FP (red).
The BMB FP is the endpoint of the BMB line (purple). All
these potentials are given by Eq. (7) (in the Wilson-Polchinski
version of the LPA flow). The gaussian FP G corresponds to
the horizontal line. The BMB FP potential shows a disconti-
nuity in its second derivative at %̄0.

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N ! 1 and d ! 3 at fixed
↵ = ✏N . Our aim is to show that to each FP A(⌧) with
⌧ 2 [0, ⌧ BMB] on the BMB line, there is one FP at finite
N , either A2(↵) or Ã3(↵), that converges to A(⌧) when
N ! 1. The problem is therefore to relate admissible
values of ⌧ , that is, values for which a FP on the BMB line
exists, to admissible values of ↵ where A2(↵) or Ã3(↵)
exist.

Within the LPA, the proof goes as follows. We assume
that at large N , the FP potentials can be expanded as:

V̄↵,N (%̄) = V̄↵,N=1(%̄) + V̄1,↵(%̄)/N +O(1/N2). (8)

We assume that V̄↵,N (%̄), V̄1,↵(%̄) and V̄↵,N=1(%̄) are reg-
ular functions of %̄. As such, V̄↵,N=1(%̄) must be the po-
tential of one the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value
of ⌧ 2 [0, ⌧ BMB]: V̄↵,N=1(%̄) = V̄⌧ (%̄). We therefore con-
clude that the regularity of V̄1,↵(%̄) together with Eqs.
(6) and (8) determines the relation between ⌧ and ↵.

It is particularly convenient to impose the analyticity
of V̄1,↵(%̄) at %̄ = 1 because all FPs of the BMB line show
an inflection point for this value of %̄ as can be seen on
Fig. 1. Generically, a nonanalytic logarithmic behavior
shows up at this point when substituting Eq. (8) into
Eq. (6). Requiring that its prefactor vanishes imposes
(see Section 3 of the Supplemental Material):

↵� 36⌧ + 96⌧2 = 0. (9)

This equation has two solutions ⌧1(↵) and ⌧2(↵) that
we choose such that ⌧1(↵)  ⌧2(↵) for all ↵, see Fig.
2 of the Supplemental Material. This implies that to
each value of ↵, that is, to each point on the hyperbola
d = 3�↵/N , correspond two FPs on the BMB line that,
as in perturbation theory, are A = A(⌧1(↵)) and Ã =
Ã(⌧2(↵)). According to Eq. (8), for any value of ↵, these
FPs must be the limits of two di↵erent FPs existing at

G

BMB

d = 3� ↵/N
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second derivative, see Fig. 1 and a detailed description below
(see also Fig. 1 of the Supplemental Material) [47]. Notice
that in theWetterich version of the flow [36,40], the potential
of the BMB FP shows a singularity at vanishing field [9].

IV FINITE-N ORIGIN OF THE BMB LINE

Let us now look for the finite N origin of the BMB line
within our functional framework. Just as in perturbation
theory, we take the limit N → ∞ and d → 3 at fixed
α ¼ ϵN. Our aim is to show that to each FP AðτÞ with
τ ∈ ½0; τBMB% on the BMB line, there is one FP at finite N,
either A2ðαÞ or Ã3ðαÞ, which converges to AðτÞ when
N → ∞. The problem is therefore to relate admissible
values of τ, that is, values for which a FP on the BMB line
exists, to admissible values of αwhere A2ðαÞ or Ã3ðαÞ exist.
Within the LPA, the proof goes as follows. We assume

that at large N, the FP potentials can be expanded as

V̄α;Nðϱ̄Þ ¼ V̄α;N¼∞ðϱ̄Þ þ V̄1;αðϱ̄Þ=N þOð1=N2Þ: ð8Þ

We assume that V̄α;Nðϱ̄Þ, V̄1;αðϱ̄Þ and V̄α;N¼∞ðϱ̄Þ are regular
functions of ϱ̄. As such, V̄α;N¼∞ðϱ̄Þ must be the potential
of one of the FPs on the BMB line. It must therefore
correspond to a solution of Eq. (7) with a definite value of
τ ∈ ½0; τBMB%: V̄α;N¼∞ðϱ̄Þ ¼ V̄τðϱ̄Þ. We therefore conclude
that the regularity of V̄1;αðϱ̄Þ together with Eqs. (6) and (8)
determine the relation between τ and α.
It is particularly convenient to impose the analyticity of

V̄1;αðϱ̄Þ at ϱ̄ ¼ 1 because all FPs of the BMB line show an
inflection point for this value of ϱ̄ as can be seen on Fig. 1.
Generically, a nonanalytic logarithmic behavior shows up
at this point when substituting Eq. (8) into Eq. (6).

Requiring that its prefactor vanishes imposes (see
Sec. III of the Supplemental Material)

α − 36τ þ 96τ2 ¼ 0: ð9Þ

This equation has two solutions τ1ðαÞ and τ2ðαÞ that we
choose such that τ1ðαÞ ≤ τ2ðαÞ for all α, see Fig. 2 of the
Supplemental Material. This implies that to each value of α,
that is, to each point on the hyperbola d ¼ 3 − α=N,
correspond two FPs on the BMB line that, as in per-
turbation theory, are A ¼ Aðτ1ðαÞÞ and Ã ¼ Ãðτ2ðαÞÞ.
According to Eq. (8), for any value of α, these FPs
must be the limits of two different FPs existing at finite
N: They are nothing but the A2ðαÞ and Ã3ðαÞ FPs found
perturbatively from Eq. (1) with, by definition, A2ðαÞ →
Aðτ1ðαÞÞ and Ã3ðαÞ → Ãðτ2ðαÞÞ when N → ∞.
Let us first notice that, as expected, Aðτ ¼ 0Þ ¼ G since

A2ðα ¼ 0Þ ¼ G, ∀N. For finite α, the A2ðαÞ FPs are
continuously related to G by continuously decreasing d
at fixed N and their limit at N ¼ ∞ must therefore also be
continuously related to G on the BMB line. This is the
Aðτ1ðαÞÞ branch of this line. This branch meets the other
one for τ1ðαÞ ¼ τ2ðαÞ≡ τc, that is, AðτcÞ ¼ ÃðτcÞ. At finite
N, this indicates that A2ðαÞ ¼ Ã3ðαÞ, which, by definition,
occurs for α ¼ αc. Within the LPA, we find αLPAc ¼ 27=8 ¼
3.375 instead of the exact result 36=π2 ≃ 3.65 obtained
from Eq. (1). For values of τ larger than τc, that is,
τ ¼ τ2ðαÞ ∈ ½τc; τBMB%, the ÃðτÞ FPs on the BMB line
are the limits of Ã3ðαÞ. Using Eq. (9) we find for τ that its
upper bound τBMB translates into a lower bound on
α∶ αBMB ¼ αðτBMBÞ. At the LPA, we find from Eq. (9):
αLPABMB ≃ 0.51.
The first order in the 1=N expansion performed in Eq. (8)

does not allow us to fully understand how Ã3ðαÞ disappears
at finite N for α < αBMB and we therefore have had
recourse to a numerical integration of the flow. We have
checked numerically at finite and large N (typically
N > 75) by directly integrating Eq. (6) that all the results
described previously are indeed correct within the LPA.
More precisely, we have checked the following: existence
of A2 for all N that emerges from G below d ¼ 3, collapse
of A2 with another, 3 times unstable FP Ã3 on the line
dcðNÞ [24], existence of Ã3 on a finite interval αBMB ≤
α ≤ αc only, existence of well-defined limits of A2ðαÞ and
Ã3ðαÞ when N → ∞ given by the potentials of Aðτ1ðαÞÞ
and Ãðτ2ðαÞÞ as found in Eq. (7).

V. SINGULAR FIXED POINTS

Our numerical analysis of Eq. (6) raises two paradoxes
of the 1=N analysis above. The first one is related to the
question: How is it possible that Ã3 disappears at finite N
for α < αBMB? Usually, a FP disappears by colliding with
another one. We have numerically found that this is again

FIG. 2. N ¼ ∞ and d ¼ 3: Singular potential of SAðτ ¼ 0.33Þ
from the potential of Aðτ ¼ 0.33Þ given by the red and dashed
red curves, Eq. (7). The green and dashed green curves show
V̄ðϱ̄Þ ¼ ϱ̄. The potential of SAðτ ¼ 0.33Þ is made of the plain
green and red curves that meet at ϱ̄0ðτ ¼ 0.33Þ. Inset: zoom of the
region around the cusp and its rounding at finite N within the
boundary layer.
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Why can the standard large N analysis fail in the O(N) model: The role of cusps in

the fixed point potentials

I. MATCHING PROCEDURE AND BOUNDARY LAYER ANALYSIS FOR C2

FIG. S1. The FP C2 of Eq. (6) in d = 3.2 at N = 1. It is shown as a solid line and is made of two parts that match at
µ̄0 = 0.694. The part on the right of µ̄0 is identical to the WF FP.
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FIG. S2. Left: The C2 FP of Eq. (6) in d = 3.5 (red), d = 3.9 (blue) and d = 3.99 (orange) at N = 1. For µ̄ > µ̄0, it coincides
with the WF FP solution and thus becomes flat when d ! 4�. Right: The C3 FP of Eq. (6) in d = 3.2 for various values of
N . It becomes flat for µ̄ > 2/d in the large N limit. At N = 1, the location of the cusp in both potentials goes to 1/2 when
d ! 4� and the two FPs coincide.

The exact (implicit) solution of Eq. (S.1) which corresponds to the Wilson-Fisher (WF) FP at N = 1 is known
[35] and plotted in Fig. S1 in d = 3.2 along with the trivial solution V̄ (µ̄) = µ̄/2. As explained in the letter, we can
identify µ̄0 as the intersection of the two curves as shown in Fig. S1.

Let us now describe the detail of the boundary layer analysis of Eq. (6). We assume that V̄ 0(µ̄) remains of order 1
and changes its value from V̄ 0(µ̄�

0 ) = 1/2, for the trivial solution V̄ (µ̄) = µ̄/2, to V̄ 0(µ̄+
0 ) = �0.0794, for the WF FP

solution. This occurs across the thin boundary layer located at µ̄0, whose width is of order 1/N so that V̄ 00 scales as
N . Inside this boundary layer, we introduce a scaled coordinate µ̃ = N(µ̄� µ̄0) and denote the slope V̄ 0(µ̄) by F (µ̃).
Then, starting from Eq. (6), we can write down a di↵erential equation which is valid inside this boundary layer at
the leading order in 1/N as

0 = 1� d V̄ (µ̄0) + (d� 2)µ̄0F + 4µ̄0F
2 � 2F � 4µ̄0 F

0, (S.1)

where µ̄ in �d V̄ (µ̄), µ̄F , µ̄F 2 and µ̄F 0 has been replaced by µ̄0. The primes in Eq. (S.1) stand for derivatives with
respect to the scaled variable µ̃. This di↵erential equation has a solution,

F (µ̃) = V1 � V2 tanh(V2µ̃), (S.2)

where we have defined V1 = 1/4 + V̄ 0(µ̄+
0 )/2 and V2 = 1/4� V̄ 0(µ̄+

0 )/2. This boundary layer solution smoothly (but
abruptly) connects the two values V̄ 0(µ̄�

0 ) = 1/2 and V̄ 0(µ̄+
0 ) = �0.0794 across the boundary layer, as expected.

 in d=3.2SG3
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parametrization

PRL 121, 231601 (2018)



Fixed point structure in the 
vicinity of d = 3, N = ∞

• The number of relevant directions around a FP at 
finite but large N is indicated with the subscript.

S. YABUNAKA, C. FLEMING, AND B. DELAMOTTE PHYSICAL REVIEW E 106, 054105 (2022)

d (α, N ), we find that Ã3(α) → Ã[τ2(α)] when N → ∞ as
expected from Eq. (26). The value of αc found from Eq. (26)
is αLPA

c = 27/8 = 3.375.
Notice that the LPA value of αc given above is not ex-

act. However, both the disappearance of A2 and the exact
value of αc can be obtained perturbatively. The four-loop
β function of the dimensionless (ϕ2)3 coupling g6 rescaled
according to g6 = g̃6/N2 can be expanded in the large-N limit
and has been shown to involve all the leading in N terms. It
reads [59,60]

Nβg̃6 = −2αg̃6 + 12g̃2
6 − π2g̃3

6/2 + O(1/N ), (27)

where α = εN as usual.1 From this β-function, valid at small
ε and large N , follows the existence of two FPs:

g̃∗
6,± = 12

π2
(1 ±

√
1 − π2α/36). (28)

Notice that at large N , the anomalous dimension is given by
η = g̃∗2

6 /(6N2) [59] and its contribution to βg̃6 is negligible
at this order. This justifies why we expect the LPA to be a
reasonable approximation at large N .

Clearly, g̃∗
6,− corresponds to A2 because it coincides with

the Gaussian FP for α = 0 and identifies with the usual per-
turbative tricritical FP. It exists up to α = αc = 36/π2 % 3.65
which is exact at leading order in 1/N .2 As for the second root
g̃∗

6,+, it clearly corresponds to Ã3 because it collides with g̃∗
6,−

at α = αc. It was however not clear from perturbation theory
whether g̃∗

6,+ was a spurious root, probably because it is not
Gaussian in d = 3. In particular, from Eq. (28), g̃∗

6,+ seems
to exist at large N in all dimensions larger than dc(N ) which
seemed doubtful, and is actually wrong as we show below.
Notice also that neither does Eq. (26) impose an upper bound
on τ which could suggest that α is unbounded from below,
that is, Ã3 exists in all dimensions larger than dc(N ). This is
due to the fact that Eq. (26) is obtained from an expansion
about '̄ = 1 which is insensitive to the singularity that occurs
at '̄ = 0 for τ ! τBMB. Since it is this singularity at small
field that prevents having a well-defined FP potential it is not
surprising that Eq. (26) cannot predict the existence and the
value of αBMB. The recourse to a functional analysis of the FP,
that is, of Eq. (23) is therefore mandatory.

We know from Eq. (23) that the BMB line has a finite
extension which means that there is a maximal value τBMB =
32/(3π )2 of the parameter τ that parameterizes the BMB line.
Using Eq. (26) and Fig. 9, we find that this upper bound on τ2
translates into a lower bound on α: αLPA

BMB % 0.51.
The exact value of αBMB can be derived from another

argument of the N = ∞, d = 3 analysis. We know that the
effective potentials of the FPs along the BMB line are all reg-
ular at small values of g̃6; see Fig. 3. It is only at the endpoint
of the regular part of the BMB line, that is, at the BMB FP
that the FP effective potential starts showing a singularity at
small fields. (We recall that the linear part of the potential in
the W-P version of the RG maps onto a single point in the

1This β function was computed at d = 3 within the large-N expan-
sion in Refs. [54,73].

2Notice that this value has been interpreted in Refs. [59,60] as the
radius of convergence of the ε = 3 − d expansion at large N .

FIG. 10. FPs existing at N = ∞ (left panel) and large N (right
panel) in d ! 3 (the Wilson-Fisher FP is not shown although it exists
everywhere). Right panel: Straight lines represent the leading order
of the critical lines d (α, N ) = 3 − α/N + O(1/N2) where two FPs
collapse. The horizontal line corresponds to α = 0, that is, d = 3.
In this dimension, A2 bifurcates from G and it exists for α ∈ [0, αc],
that is, dc(N ) < d < 3. At αc, A2 = Ã3 and beyond this value of α

these two FPs do no longer exist as real FPs. The FP Ã3 exists for
α ∈ [αBMB, αc]. At leading order in 1/N , Ã3 = SÃ4 for α = αBMB.
The FP SÃ4 collapses with SA3 for α = αc and thus, as Ã3, exists
for α ∈ [αBMB,αc]. The line dc(N ) corresponding to α = αc is rep-
resented as a dashed line with alternating colors: dark pink for the
line where SA3 = SÃ4 and blue for the line where A2 = Ã3. Notice
that these lines are only superimposed at leading order in N and
differ at finite N . The FP SA3 can be followed above d = 3 where
it is identical to SG3. Left panel: the full BMB line made of the
regular FPs A = {A, Ã} between the Gaussian and the BMB FPs
and of the singular FPs SÃ = {SA, SÃ} between the BMB and the
singular Gaussian SG FPs. This line, made of four parts, corresponds
to the limits when N → ∞ of A2 → A, Ã3 → Ã, SÃ4 → SÃ, and
SA3 → SA. The dashed lines between the right and left panels show
the limits of the remarkable FPs: The Gaussian FP G on the BMB
line is the limit of the Gaussian FP at finite N , the FP at the border of
the A and Ã domains, that is, where A = Ã is the limit of A2 = Ã3

along the line indexed by αc, the BMB FP is the limit of Ã3 = SÃ4

along the line indexed by αBMB, the FP where SA = SÃ is the limit
of SA3 = SÃ4 along the line indexed by αc and finally SG is the limit
of SA3 along the line indexed by α = 0.

Ellwanger-Morris-Wetterich version.) It has been shown that
this occurs at g̃∗

6,+ = 2 [25,26]. Using Eq. (28) we conclude
that the corresponding value of α is αBMB = 2 − π2 % 2.13.
Notice that whereas the LPA value of αc differs from the
exact value by about 10%—3.375 instead of 3.65—the LPA
value of αBMB is off by a factor 4. It can be shown that this
value improves significantly when going at order two of the
derivative expansion [62].

From our analysis of the BMB line made above, we know
that it is made of a regular part and of a singular part which
is nothing but a singular copy of the regular part; see Fig. 10.
From this point of view, the BMB FP is both the endpoint of
the regular part and the starting point of the singular one. The
fact that αBMB is the lower bound of the values of α on the
Ã branch of the BMB line, see Fig. 9, implies that for finite
N the FP Ã3 ceases to exist above the dimension dBMB(N ) =
3 − αBMB/N . As usual, it is expected that this occurs by the
collapse of Ã3 with another FP. The paradox is that there is
no candidate within the ε and 1/N expansions for this new
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Supplemental Material

I. PLOT OF V̄
0 AND SINGULARITY OF THE BMB FP POTENTIAL

In Fig.1 of the main text, for ⌧ = ⌧BMB, V̄ (%̄) has a discontinuous curvature that is not very visible. We thus choose
to plot V̄ 0 as a function of %̄:

FIG. S1. Potentials V̄
0(%̄) of the tricritical FPs A(⌧) = {A(⌧), Ã(⌧)} of the BMB line (blue). The BMB FP is the endpoint

of the BMB line (purple). The second derivative V̄
00(%̄) of the potential of the BMB FP shows a discontinuity in its second

derivative at %̄ = %̄0.

II. PLOT OF ⌧ AS A FUNCTION OF ↵

We plot here the relation between ⌧ and ↵ as a visual means of understanding how the finite N FPs A2(↵) and
Ã3(↵) relate to the BMB line A(⌧)

�BMB

�BMB �c
A

A
˜

0.0 0.5 1.0 1.5 2.0 2.5 3.0
�

0.1

0.2

0.3

0.4

0.5
�

FIG. S2. ⌧ on the BMB line at N = 1 as a function of ↵ = (d� 3)N within the LPA approximation of the NPRG formalism.
The two branches given by A and Ã give the limits when N ! 1 of the two FPs at finite but large N , namely A2(↵) and
Ã3(↵). Both branches meet at ↵ = ↵c = 3.375 and the upper branch Ã extends to the point (↵BMB, ⌧BMB) ' (0.51, 0.36)

d = 3� ↵/N
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Summary
• The large N limit that allows us to find the BMB line 
must be taken on particular trajectories in the 
plane:  and not at fixed dimension d= 3.  

• Our study also reveals that the known BMB line is only 
half of the true line of fixed points, the second half 
being made of singular fixed points.  

• The potentials of these singular fixed points show a 
cusp for a finite value of the field and their finite N 
counterparts a boundary layer.

(d, N)

d = 3 − α/N



Results on the BMB line 
at  and d = 8/3 N = ∞



• What occurs if we follow T3  from    to  

continuously as a function of (d,N)?

(d =
8
3

−
, N = 1) (d =

8
3

−
, N = ∞)

Simple paradox on the 
tetracritical FP                    T3



T３ in d=2.6 for small N

T３ has three extrema in .  
The three extrema approach for larger N 

ϕ̄ > 0

0 2 4 6 8
ϕ0.375

0.38

0.385

0.39
U(ϕ)

N=4.5
N=1



T３ in d=2.6

The potential becomes very flat, 
  since three extrema become very close.

Numerically T３ continues to exist up to N=∞. 
Why is the Large-N limit not captured by conventional Large-N analysis??

N = 1500

N = 42000

N = 4500

, WFN = ∞



Global plot of the second 
derivative of the  potential

It converges to that of WF FP except at  μ̄ = μ̄0
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μ
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V ''[μ] N=6×103

N=1.7×104

N=3.2×106

N=∞WF

The difference between  and WF can be seen not in their potential 
 but in their derivatives

T3



Eigenperturbations  
around T3
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The corresponding eigenvalue 
 tends to ν−1 = d − 2

The two eigenperturbations become singular.



Scaling behavior inside the  
boundary layer 

• For very large N, the distances between the three 
extrema are proportional to          .           

•          at the three extrema approach constant values.    
…The third and higher order derivatives become 
singular. 

• We can expect a scaling 　　　　　　　　　   . 

• We can identify the position of the boundary layer as　　　
　               , from numerical solutions and boundary 
layer analysis
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Boundary layer analysis
• To simplify the notation we employ Wilson-Polchinski version of 
LPA FP eq. 

• Around   

we introduce a scaled variable , 

and the potential is scaled as .                　

　　　 

•  The        contribution of FP eq. vanishes if we set  　　　　　  , 
and the         contribution is  

μ̃ = N1/2(μ̄ − μ̄0)

μ̃ = N1/2(μ̄ − μ̄0)

ṼN(μ̃) = N (V̄(N−1/2μ̃ + μ̄0) − 1/d)
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O(✏2)

0 = 1 − d V̄ + (d − 2)μ̄V̄′￼+ 4μ̄V̄′￼
2 − 2V̄′￼−

4
N

μ̄ V̄′￼′￼

−
8Ṽ′￼′￼∞(μ̃)
d − 2

+
8Ṽ′￼∞(μ̃)2

d − 2
+ (d − 2)μ̃Ṽ′￼∞(μ̃) − dṼ∞(μ̃) = 0

μ̄0 = 2/(d − 2)



Scaled boundary layer for  
finite but very large N

 The value of  for WF FP at  　　　　　V̄′￼′￼(μ̄0) N = ∞
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Boundary layer solution



BMB line  
in  and at d = 8/3 N = ∞
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2 − x
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4x
(2 − x)7/3 ∫

1

0
dz ( 2 − xz

z )
1/3

C = ∞ Gaussian
C = 0 WF

Here taking derivatives (at ) and 
 the limit  do not commute, which explains 

 the difference of the stability between  and WF

μ̄ = 3

C → 0

T3



Finite-  analysis around N

d = 8/3, N = ∞
• When we follow  on the hyperbola =const,  

 converges to a FP on the BMB line .

T3 ϵN = α

T3 α = 162/C3
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μ
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-0.05

0.05

0.10
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C=0.672, N=∞
N=4000 α=1600/3
N=8000 α=1600/3
N=24000 α=1600/3



Summary
• We followed tetracritical FP T３  in O(N) models increasing 
N with LPA. 

• It seems that T３ continues to exist up to N=∞. The third 
and higher order derivatives become singular at 
           .  

• The potential converges to that of WF FP except at  
          . 

• Can we conjecture that a similar scenario holds for Tn with 
odd n?
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 　　　    modelO(N)�O(2)

• Ginzburg-Landau-Wilson Hamiltonian is given as                                          　

2

with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)
models so far: When decreasing d from d ⇠ 4 down to
d = dc1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = dc2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < dc2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�i · �j = �ij (1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by

H =

ˆ
ddx
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The constraint �i · �j = �ij for i, j = 1, 2 can be re-
placed by a soft potential U (�1,�2) whose minima are
given by �i ·�j = const⇥ �ij and the Ginzburg-Landau-
Wilson Hamiltonian for STA reads

H =

ˆ
ddx
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Instead of �i, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:

⇢ = Tr (t��)

⌧ = 1
2Tr (

t��� ⇢/2)
2
.

(4)

With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
�

2
(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �↵,i =

p
/2�↵,i

III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �k. The first
step is to introduce a k-dependent partition function Zk

in the presence of sources:

Zk [J i] =

ˆ
D�i exp (�H[�i]��Hk[�i] + J i · �i) ,

(6)
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)
models so far: When decreasing d from d ⇠ 4 down to
d = dc1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = dc2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < dc2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�i · �j = �ij (1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by

H =

ˆ
ddx
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placed by a soft potential U (�1,�2) whose minima are
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H =

ˆ
ddx

✓
1

2

h
(@�1)

2 + (@�2)
2
i
+ U (�1,�2)

◆
. (3)

Instead of �i, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:

⇢ = Tr (t��)

⌧ = 1
2Tr (

t��� ⇢/2)
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(4)

With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
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2
(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �↵,i =

p
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �k. The first
step is to introduce a k-dependent partition function Zk

in the presence of sources:

Zk [J i] =

ˆ
D�i exp (�H[�i]��Hk[�i] + J i · �i) ,

(6)

with                    which takes a minimum when
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)
models so far: When decreasing d from d ⇠ 4 down to
d = dc1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = dc2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < dc2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�i · �j = �ij (1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by

H =
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ddx
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The constraint �i · �j = �ij for i, j = 1, 2 can be re-
placed by a soft potential U (�1,�2) whose minima are
given by �i ·�j = const⇥ �ij and the Ginzburg-Landau-
Wilson Hamiltonian for STA reads

H =
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Instead of �i, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:

⇢ = Tr (t��)

⌧ = 1
2Tr (

t��� ⇢/2)
2
.

(4)

With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
�

2
(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �↵,i =

p
/2�↵,i

III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �k. The first
step is to introduce a k-dependent partition function Zk

in the presence of sources:

Zk [J i] =

ˆ
D�i exp (�H[�i]��Hk[�i] + J i · �i) ,

(6)
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)
models so far: When decreasing d from d ⇠ 4 down to
d = dc1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = dc2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < dc2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�i · �j = �ij (1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by

H =
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The constraint �i · �j = �ij for i, j = 1, 2 can be re-
placed by a soft potential U (�1,�2) whose minima are
given by �i ·�j = const⇥ �ij and the Ginzburg-Landau-
Wilson Hamiltonian for STA reads

H =
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Instead of �i, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
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2
(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �↵,i =

p
/2�↵,i

III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �k. The first
step is to introduce a k-dependent partition function Zk

in the presence of sources:

Zk [J i] =

ˆ
D�i exp (�H[�i]��Hk[�i] + J i · �i) ,

(6)
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)
models so far: When decreasing d from d ⇠ 4 down to
d = dc1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = dc2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < dc2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�i · �j = �ij (1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by

H =

ˆ
ddx
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The constraint �i · �j = �ij for i, j = 1, 2 can be re-
placed by a soft potential U (�1,�2) whose minima are
given by �i ·�j = const⇥ �ij and the Ginzburg-Landau-
Wilson Hamiltonian for STA reads

H =

ˆ
ddx
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Instead of �i, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:

⇢ = Tr (t��)

⌧ = 1
2Tr (

t��� ⇢/2)
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
�

2
(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �↵,i =

p
/2�↵,i

III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �k. The first
step is to introduce a k-dependent partition function Zk

in the presence of sources:

Zk [J i] =

ˆ
D�i exp (�H[�i]��Hk[�i] + J i · �i) ,

(6)
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)
models so far: When decreasing d from d ⇠ 4 down to
d = dc1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = dc2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < dc2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�i · �j = �ij (1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by

H =

ˆ
ddx
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The constraint �i · �j = �ij for i, j = 1, 2 can be re-
placed by a soft potential U (�1,�2) whose minima are
given by �i ·�j = const⇥ �ij and the Ginzburg-Landau-
Wilson Hamiltonian for STA reads

H =

ˆ
ddx
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Instead of �i, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
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2
(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �↵,i =

p
/2�↵,i

III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �k. The first
step is to introduce a k-dependent partition function Zk

in the presence of sources:

Zk [J i] =

ˆ
D�i exp (�H[�i]��Hk[�i] + J i · �i) ,

(6)
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)
models so far: When decreasing d from d ⇠ 4 down to
d = dc1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = dc2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < dc2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�i · �j = �ij (1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by

H =
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ddx
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The constraint �i · �j = �ij for i, j = 1, 2 can be re-
placed by a soft potential U (�1,�2) whose minima are
given by �i ·�j = const⇥ �ij and the Ginzburg-Landau-
Wilson Hamiltonian for STA reads

H =
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ddx
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Instead of �i, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:
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2
.

(4)

With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
�

2
(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �↵,i =

p
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �k. The first
step is to introduce a k-dependent partition function Zk

in the presence of sources:

Zk [J i] =

ˆ
D�i exp (�H[�i]��Hk[�i] + J i · �i) ,

(6)

that satisfies

3

where Ji · �i =
P2

i=1

´
x Ji (x) · �i (x) , and �Hk =P2

i=1 �i(x) · Rk(x � y) · �i(y). The idea underlying the
effective average action is to integrate in Zk only the
fluctuations of large wave-numbers (rapid modes) com-
pared to k while freezing the others (slow modes) and
to progressively decrease k. Rk(q2), which is the Fourier
transform of Rk(x), plays the role of separating rapid
and slow modes: It almost vanishes for |q| > k so that
the rapid modes are summed over and is large (of order
k2) below k so that the fluctuations of the slow modes
are frozen. We define as usual Wk[J i] = lnZk[J i]. Thus,
the order parameter 'j (x) at scale k is defined by

'i (x) = h�i (x)i =
�Wk [J i]

�J i (x)
(7)

The running effective average action �k ['i] is defined by
means of the modified Legendre transform by

�k ['i] = �Wk [J i] + Ji ·'i ��Hk ['i] (8)

where J i is defined such that Eq. (7) holds for fixed 'i.
From this definition one can show that

(
�k=⇤ ' H

�k=0 = �
, (9)

where the cutoff ⇤ is the inverse of the lattice spacing
a. Equations (9) imply that �k interpolates between the
hamiltonian of the system when no fluctuation has been
summed over, that is, when k = ⇤, and the Gibbs free
energy � when they have all been integrated, that is,
when k = 0. We define the variable t, called “RG time”,
by t = ln (k/⇤). The exact flow equation for �k reads [?
? ]:

@t�k['i] =
1

2
Tr

ˆ
x,y

@tRk(x�y)

✓
�2�k ['i]

�'↵
i (x) �'↵0

i0 (y)
+Rk (x� y) �i,i0�↵,↵0

◆�1

,

(10)
for ↵,↵0 = 1, 2, · · ·N and i, i0 = 1, 2.

IV. TRUNCATION OF THE NPRG EQUATION

It is generally not possible to solve exactly the above
flow equation and several approximations are employed in
practice. In this paper, we employ the so-called LPA (lo-
cal potential approximation) or LPA’. In these schemes,
�k is approximated by a series expansion in the gradient
of the field, truncated at its lowest non trivial order:

�k ['i] =

ˆ
ddx

✓
1

2
Zk

h
(@'1)

2 + (@'2)
2
i
+ Uk (⇢, ⌧)

◆
,

(11)
where the k-dependent potential Uk (⇢, ⌧) is defined as

⌦Uk (⇢, ⌧) = �k ['i] (12)

where 'i, i = 1, 2 are constant fields and ⌦ is the vol-
ume of the system. Zk is assumed to be independent of

the fields 'i in both LPA and LPA’. It is set to one in
LPA: ZLPA

k = 1, which leads to a vanishing anomalous
dimension: ⌘ = 0. In LPA’ calculations, the anomalous
dimension ⌘ is obtained from the flow of Zk since it can
be shown that at criticality:

Zk!0 ⇠
✓
k

⇤

◆�⌘

. (13)

We give a precise definition of Zk in Appendix A as well
as of ⌘. At criticality, the k-dependent effective action is
attracted towards the fixed point solution of the NPRG
equation once it is expressed in terms of the dimensionless
renormalized fields  ̃i and a dimensionless local potential
Ũk( ̃i). We thus define the dimensionless and renormal-
ized quantities:

 ̃i =
�
Zkk2�d

�1/2
 i

Ũk( ̃i) = k�dUk ( i) .
(14)

We expand the fixed point potential in the following form

Ũk

⇣
 ̃1,  ̃2

⌘
=

2n+4m14X

n,m=0

1

n!m!
ãn,m (⇢̃� ̃)n ⌧̃m, (15)

and solve the flow equation for the coupling constants
ãn,m. In the following calculations, we truncate the ex-
pansion at the 14-th order of  i for i = 1, 2.

V. RESULTS FOR FINITE BUT LARGE N

Here we explain the results for finite N as shown in
Fig. 1. C�, C�� and C��� exist in d0c (N) < d < 4,
d0c (N) < d < d00c (N) and 2 < d < d00c (N), respectively,
for sufficiently large N & 20. C�, C�� and C��� are
the multicritical fixed points with two, three and two
relevant directions. There occur the following saddle-
node bifurcations: In decreasing d with fixed N & 20,
firstly in d = d00c (N), C�� and C��� appear as a pair of
unstable and stable fixed points with respect to the RG
trajectory joining them. Secondly in d = d0c (N), C� and
C�� fixed points collide with each other and vanish.

In Fig. 1, we also plot the curve Nc (d) on which C�
and C�� fixed points collides with each other and van-
ish. This curve Nc (d) was obtained with another full-
funtional treatment of the local potential approximated
NPRG flow equation, which will be explained elsewhere.

For N & 20, we have confirmed that increasing the or-
der of truncation only slightly changes d0c (N) and d00c (N).
For smaller d and N , our field expansion method is not
very accurate because of poor convergence of the ex-
pansion, which have been often the case for NPRG cal-
culations. From this result, we cannot see the behav-
ior of d0c (N) and d00c (N) for smaller N and more ac-
curate numerical method would be necessary for that
purpose. For the moment, nevertheless, one can make
the following conjecture by simple extrapolation of the
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Figure 1: (Top and bottom) The curves Nc (d) , N
0
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00
c (d)

for N  180(top) and N  30(bottom). The two continuous
curves correspond to the five-loop results.

large N results without assuming any further bifurcations
of the multicritical fixed points C�, C�� and C���:
N 0

c (d) and N 00
c (d) both approach Nc (d) in decreasing

d down to d = 2, and d0c (N = 2) = d00c (N = 2) = 2.
Then, C�, C�� and C��� exist in d0c (N) < d < 4,
d0c (N) < d < d00c (N) and 2 < d < d00c (N), respectively,
for all N � 2.

We observed that the mass and the coupling coeffi-
cients (except for a0,1, a1,1 and a2,0) for C��� diverge in
approaching d = 2. This divergence was not taken into
account in the previous analyses and this may give the
answer, at least for large N , why the multicritical point
C��� (not C�) was not captured with the non-linear
sigma model adound d = 2.

Even in d > d00c (N), we can follow, increasing d, the
complex fixed point solutions of the NPRG flow equation
which correspond to C�� and C��� for d < d00c (N) and
have found that they do not coincides with the Gaussian
fixed point in d = 4. This indicates that C�� and C���
are nonperturbative multicritical fixed points which can-
not be captured with perturbation methods around the
Gaussian fixed point.

VI. RESULTS FOR LARGE-N LIMIT CASES

We rescaled the coupling constants for C� fixed point
as

̃ = N�1K�, (16)
ã0,l = N�2l+1A�

0,l, (17)

ãk,l = N�k�2lA�
k,l (for k 6= 0) , (18)

the coupling constants for C�� and C��� fixed points
as

̃ = N�1K��(���), (19)

ã0,1 = N�1A��(���)
0,l , (20)

ãk,l = N� k
2�

3l
2 A��(���)

k,l (for (k, l) 6= (0, 1)) . (21)

These nontrivial scalings in 1/N can be deduced from the
numerical solutions for C�, C�� and C��� fixed points
as shown in Fig. 2 for C� in d = 3.9. We note that the
conventional scaling for C+ fixed point which has been
used in Large-N analysis with NPRG is given as

̃ = N�1K, (22)
ãk,l = N�k�2l+1Ak,l. (23)

We can obtain the Large-N limit RG flow equation
at 14-th order of truncation by taking the leading order
contribution in 1/N under the above scalings and the
contributions of ⌘ and !̃ are found to be negligible as
shown in Appendix.

In Large-N limit, we found the following facts: (1)
C� fixed point exists in the in 3 < d < 4. (2) C��
fixed point exists in 3 < d . 3.37 and it collides with
C��� at d = d00c (N = 1) ⇠ 3.37. (3) Approaching
d = d0c (N = 1) ⇠ 3, The scaled coefficients of C�, A�

1,1,
A�

1,2 A�
2,0, A

�
2,1 and A�

3,0 are diverging as shown in Fig.
3 and the scaled coefficients of C�� higher than 6-th or-
der vanish. These singularities can be attributed to the
collision of the fixed points with the different scalings in
Large N . (4) C��� fixed point exists in 2 < d . 3.37.
We note that d00c (N = 1) depends slightly on the order
of truncation and d0c (N = 1) ⇠ 3 does not depend on
the order of truncation. Thus we conjecture the exact
relation d0c (N = 1) = 3.

Numerically, we found that the eigenvalues �1, �2 and
�3 for the linearized RG flow in the large N limit are
given by

�1 = �2,�2 = � (4� d) ,�3 = 2 (d� 3) ,�4 = (4� d)
(24)

in 3 < d  10/3 and

�1 = �2,�2 = � (4� d) ,�3 = (4� d) ,�4 = 2 (d� 3)
(25)

in 10/3  d < 4 for C�, irrespective of the order of trun-
cation. Unfortunately, we have not yet been able prove
it analytically. Thus the exponent ⌫ = 1/ |�1| for the C�
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ã0,1 = N�1A��(���)
0,l , (20)
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FIG. 4. O(N)⊗O(2) model. In the gray region, starting in
d = 4 at N = 21.8, no FP at all is found. Above this region
and for d close to 4, both the critical C+ and the tricritical
C− FPs are found. The line on the right joining the squares
indicates the region where two nonperturbative FPs, M2 and
M3, appear. On the line joining the crosses, C− and M3

collapse. In each region, we indicate the FPs that are present.

argument for following smoothly the FPs everywhere in
the (d,N) plane and exhibiting the double-valued struc-
ture of T2 and C2 makes sense only after allowing the
FPs to be complex-valued (or, in a Taylor expansion, the
g∗m to be complex). For instance, let us again consider
Fig. 3.b. We start at P with T2 which is very close to G.
Beyond the line Nc(d), T2 becomes complex. It becomes
real again when the path crosses N ′

c(d) and it is then
C2 which is far from G. If we go on following the same
path, C2 remains real all the way but after the second
full rotation, it is T2 again.
The second interesting feature of the curve N ′

c(d) is
that it also becomes vertical at large N while being this
time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = ∞
everywhere for d ∈]3, 4[ and C2 for d ∈]2, 4[. However,
we also find that for larger and larger N in d > 3, the
FP potentials of C2 and C3 become steeper and steeper
at ρ = 0 which indicates the presence of a singularity at
the origin in their FP potential or its derivatives. The
second derivative of the two potentials with respect to ρ
becomes also discontinuous at a point ρ #= 0 in the large
N limit. These singularities are a possible explanation of
the fact that these two fixed points were not found previ-
ously in large N analyses[11–14, 16]. Using the LPA’, we
have checked that the line N ′

c(d) is only slightly modified
compared to the LPA results because η is small all along
this line. It makes us confident that the overall picture
above is not an artefact of our truncations.
The double-valued character of the FPs exhibited

above concerns only C2 and T2 and we could wonder
whether the same thing occurs for C3. We have indeed
found two other nonperturbative FPs that are 3- and 4-
unstable, two analogues of the curves Nc(d) and N ′

c(d)
where these FPs show up and annihilate as well as a

singular point S′ where the two curves meet and that
shares many similarities with S. It is of course tempt-
ing to imagine that this kind of structure repeats for the
4-unstable FP found that itself involves a 5-unstable FP
and so on and so forth.

A natural question is whether the intricate FP struc-
ture presented above is specific to the O(N) models or
is generic. To shed some light on this question, we
have therefore considered the O(N)⊗O(2) model which
is relevant for frustrated antiferromagnetic systems [35–
37]. The order parameter of this model is the N × 2
matrix Φ = (ϕ1,ϕ2) [38] and the Hamiltonian is the
sum of the usual kinetic terms and of the potential
U = r(ϕ2

1+ϕ2
2)+u(ϕ2

1+ϕ2
2)

2+v(ϕ2
1ϕ

2
2−(ϕ1 ·ϕ2)2). By

a suitable choice of r, u and v the symmetry is sponta-
neously broken down to O(N−2)⊗O(2). For N typically
larger than 21.8, two FPs are found in d = 4−ε, a critical
one, C+, that can be followed smoothly down to d = 2
and another one, C−, which is tricritical [39, 40]. These
FPs are also found in the large N expansion in all dimen-
sions between 2 and 4 [40–42]. However, using the LPA’,
we find for C− a picture which is very much similar to
the O(N) case, see Fig. 4: (i) There exists a line where
C− collapses with a 3-unstable FP, that we call M3; (ii)
this line is asymptotic to the d = 3 axis, and (iii) M3

appears on another line together with a 2-unstable FP
that we call M2 [43].

To conclude we have found that the multicritical FP
structure of both the O(N) and O(N)⊗O(2) models is
much more complicated than usually believed. In par-
ticular, we have shown that several nonpertubative FPs
exist in d = 3 that were not previously found. Although
they also exist at N = ∞ on a finite interval of dimen-
sions they were not found by previous direct studies of
this case and this is clearly a subject that must be fur-
ther studied, see however [22]. The existence and role of
possible singularities of the FP potential of C2 and C3

should be studied in the future as well. It would also be
interesting to study the d = 3 case and figure out what
the basins of attraction of both C2 and C3 are to know
whether the multicriticality of some lattice models could
be described by these FPs. The NPRG, here again, is a
method of choice for this study but the conformal boot-
strap program could probably definitively prove/disprove
the existence of the C2 and C3 FPs in d = 3. We can also
expect that there are other nonperturbative FPs that col-
lide with Tn (n = 3, 4, · · · ) as C2 does with T2. They are
also left for future study. Finally, an intriguing question
is: Could it be that what we have found above has for
a known physical system an impact on its criticality or
multicriticality?
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