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O(N) models

* They have played an important role in our understanding of
second order phase transitions.

e N-component vector order parameter
N=1...Ising, N=2...XY, N=3...Heisenberg Model

e (Critical physics (controled by WF FP) has been well
understood with various theoretical approaches...Exact
solution (2d Ising), Renormalization group (d=4-g, 2+¢

expansion), Large-N analysis, conformal bootstrap

We study multicrical fixed points at Large-N and show
that nonperturbative effects are important.



Common wisdom on the criticality
of O(N) models (finite N case)

GLW Hamiltonian H|¢| = 1 /(V@)Q + U(¢) O

2
, ’er . N-component
U(p) = arpy + a)(d;)” + ag(P7) + . .. order parameter

Below the critical dimension d, =2+ 2/n | the (gbl.z)’””r1 term
becomes relevant around the Gaussian FP (G).
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A nontrivial fixed point 1}, with n relevant (unstable) directions
branches from G at d,. (Wilson-Fisher FP, which describes second
order phase transition, at d=4 and the tricritical FP /5 at d=3....)



Bardeen-Moshe-Bander (BMB)
Phenomena atd =3 and N = «©

Bardeen-Moshe-Bander found an intriguing

phenomenon in O(V) models with z(¢?)? interaction.

() at d =3 and N = 0, there exists a finite line of fixed
points that starts at the Gaussian FP (zr = 0) and ends at
a special FP called the BMB FP

(i) the FPs for ¢ # 0 are interacting FP (2-unstable and

1-magrinal) but the critical exponents are all identical
to the Gaussian ones.



Bardeen-Moshe-Bander (BMB)
Phenomenon atd =3 and N = «©

06—y
0.4 \\'BM
0.2\
- i SE Y
00 Gaussian |
S | D. F. Litim, M. J. Trott,
Y / / Phys. Rev. D 98, 125006 (2018)
gL |

L e e e e N
-02-0.1 00 0.1 02 03 04 05
A Quartic coupling

(i) The FPs are UV stable on the critical surface

(iv) The FP potential of BMB FP has singularity at
small fields, suggesting spontaneous symmetry
breaking of scale invariance




Flow of 7

. The flow of # = N?r in perturbation theory at Large N becomes
Nf. = —2al + 124* — 2°A%/12 + O(1/N)
where a = (3 —d)N

. Two roots of . =0: 7. = 4/72(3 £1/9 — 72a/4)
7_ (corresponding to the perturbative tricritical FP) exists
between 3 —a./N < d < 3 with a, = 36/7* ~ 3.65.

7, exists for 3 —a./N < d.

(Note that perturbation theory might be not very precise for z,)
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. Hereafter we call the FP corresponding 7_ (z,) as A, (A;)

The number of relevant directions around a FP is indicated with the subscript.

. How can we understand the line of FPs and its end point at N = « using

Large-N limit of finite N FPs (4, , A;)?



Fixed point structure at
general values of (d,N)
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. Understanding BMB phenomena is essential for
understanding fixed point structure of O(N) models

at general values of (d,N).



Bardeen-Moshe-Bander (BMB)
ine at d =8/3 and N =

It Is shown with FRG that
(J. Comellas and A. Travesset, Nucl. Phys. B 1997),

() at d = 8/3 and N = o0, there exists a finite line of

tetracritical fixed points (3 unstable+1 marginal) that
starts at the Gaussian FP (1 =0) and ends at the WF FP.

(Question: How can the stabillities of the FPs be different?)

(i) the FPs (# WF) for 4 # 0 are interacting FP but the

critical exponents are all identical to the Gaussian ones.



Flow of A

. Calling 1/(384N?) the coupling in front of i(¢?*)* term,

the large-N flow equation for 1 becomes

9,2 .
0, = —3el + Iy + ON~?) with e =8/3 —d

. The nontrivial tetracritical FP solution i1s 4* = 4eN/3

and does not indicate disappearance of FP in the
imit N - oo at fixed e. (However, In this limit, the FP

IS no longer controlled perturbatively.)



Non perturbative
renormalization group (NPRG)

- Modern implementation of Wilson’s RG that takes the

fluctuation into account step by step in lowering the cut-off
wavenumber k, In terms of wavenumber-dependent effective

action 1'g

CoA ﬁpk—A = H Microscopic Hamiltonian

Tieo = < Effective action (Free energy),
»c,  where all the fluctuations are
ooy space taken into account.

C3...Cp,



NPRG equation

NPRG equation (Wetterich, Phys. Lett. B, 1993) is

O[] = 5 TO RGN, ~ 4 6] + Rule)™

t=1In(k/A)



Derivative expansion(DEZ2)

. |t is impossible to solve the NPRG equation exactly and we
have recourse to approximations,

1 1

gl = [ (320(V6) + () 6rv6.)

p=Qip;/2

LU(p) + 0<v4>) |

. Simpler approximations---LPA(n =0), LPA" approximation



Applications of DE
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Reexamination of the nonperturbative renormalization-group approach
to the Kosterlitz-Thouless transition
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We reexamine the two-dimensional linear O(2) model (¢* theory) in the framework of the nonperturbative
renormalization-group. From the flow equations obtained in the derivative expansion to second order and with
optimization of the infrared regulator, we find a transition between a high-temperature (disordered) phase and a
low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement
with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the
transition. In particular, we find the anomalous dimension 7(7kr) >~ 0.24 and the stiffness jump p,(Ty) > 0.64 at
the transition temperature Txr, in very good agreement with the exact results 7(Txr) = 1/4 and p,(Tyy) = 2/,
as well as an essential singularity of the correlation length in the high-temperature phase as T — Tir.

1
ATI$] = S psk / d'r (Vo).

ro — roe = —3.69 X 107
- TO = TU(',
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Precision calculation of critical exponents in the O(N) universality classes
with the nonperturbative renormalization group
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We compute the critical exponents v, n and w of O(N) models for various values of N by implementing the
derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually
denoted O(d*)]. We analyze the behavior of this approximation scheme at successive orders and observe an
apparent convergence with a small parameter, typically between % and %, compatible with previous studies in
the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents
with a precision which is similar or better than those obtained by most field-theoretical techniques. We also
reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case,
where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat
exponent «, our results are compatible with those of Monte Carlo but clearly exclude experimental values.

v n 15}
LPA 0.7090 0 0.672
0(9?) 0.6725(52) 0.0410(59) 0.798(34)
0(8%) 0.6716(6) 0.0380(13) 0.791(8)
CB (2016) 0.6719(12) 0.0385(7) 0.811(19)
CB (2019) 0.6718(1) 0.03818(4) 0.794(8)
Six-loop, d =3 0.6703(15) 0.0354(25) 0.789(11)
€ expansion, €’ 0.6680(35) 0.0380(50) 0.802(18)
€ expansion, €® 0.6690(10) 0.0380(6) 0.804(3)
MC+High T (2006) 0.6717(1) 0.0381(2) 0.785(20)
MC (2019) 0.67169(7) 0.03810(8) 0.789(4)
Helium-4 (2003) 0.6709(1)

Helium-4 (1984) 0.6717(4)

XY-AF (CsMnF3) 0.6710(7)

XY-AF (SmMnO3) 0.6710(3)

XY -F (Gd,IFe,) 0.671(24) 0.034(47)

XY-F (Gd»ICo,) 0.668(24) 0.032(47)




Nondimensionalized
NPRG ea.

. Scaling solutions can be found as FPs solution of
nondimensionalized NPRG ea.

6= \"7Zk 2 ¢ b= Zpk*p U4(5) = k~U(p)
timoutoft 5= L Rule?) = ZuPyry) )= (1y - DA 1)
Under LPA,
517(@)=—dﬁ($)+l(d—Z)qBI?’(&H(N—U ¢ | !
o R t S+ 043 1+07(d)



Us

ual large N limit of the
LPA flow

Rescaled finite N equation ﬁt — NU, gg =V N @

0:U(¢) = —dUs(¢) + %(d— 2)6 Ul(¢) + (1 _ i) gE—|—§ 11

. The terms proportional to 1/N are assumed to be
subleading.

. At N=o, the resulting NPRG eqg without an explicit

1/N @
be so

ependence was believed to be exact and can

ved exactly.



Wilson-Polchinskl version
of NPRG

Transformation of the variables

(U,¢) «— (V, @)

Rescaling in N = u/N,V=V/N
_ _ _ _ 4
LPAFPeq. 0=1—dV +(d—2)aV' +4pV’'? -2V’ — ~ V.

1/N A small parameter

V"' The highest order derivative

We have to deal with singular perturbation in general.



Usual large-N limit in the Wilson-
Polchinski parametrization

_ N _ B 2 B
0=1-dV +(d—2)aV" +20V" - V/%V

. In generic dimensions 2 < d < 4, It has three solutions:

Gaussian FP (G), Wilson Fisher FP (WF) and linear FP
V(p) = 0 (discontinuity FP).

. In dimensions d = 2 + 2/p with odd integer p > 0, (p?)?*!

term Is marginal around G and a line of FPs starting
from G and terminating at BMB FP appears.



Results on the BMB
ine atd=3 and N = o



Tricritical FP solutions In d = 3
and at N= o In LPA

7o WF FP
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Nonanalicity of BMB FP

04 V(@ dV'/do

. d*VIdp* becomes discontinuous at ¢ = g,

. In Wetterich parametrization, the nonanalicity corresponds to a
cusp-like behavior U(¢) ~ const|¢|



Finite-N realization of the
regular BMB line

. Let us consider to follow A, or A; on a path

toward (d=3,N=o):d=3—a/N,N =

. It approaches a FP on the BMB line and 7 is given

b
Y a — 367 4+ 9672 =0

. Derivation: We expand the potential as

Van(0) = Vo Neoo(0) + V1,4(2)/N + O(1/N?).

and impose analyticity of V;,(g) around 0 =1



Plot of ¢
as a function of «

Under the double limit d =3 — /N, N — oo
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. What occurs for A; at 7 = 15,5 and finite but large N7



Singular FPs constructed
from the FPs on the BMB line

SG, already found at
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FIG.2. N = oo and d = 3: Singular potential of SA(r = 0.33)
from the potential of .A(z = 0.33) given by the red and dashed
red curves, Eq. (7). The green and dashed green curves show
V(9) = 0. The potential of SA(r = 0.33) is made of the plain
green and red curves that meet at ¢ (7 = 0.33). Inset: zoom of the
region around the cusp and its rounding at finite N within the
boundary layer.
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SG; (with 3 relevant directions)

SG, ind=3.2
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Fixed point structure In the
vicinity of d = 3, N =

0.5
d
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. The number of relevant directions around a FP at
finite but large N is indicated with the subscript.



Summary

. The large N limit that allows us to find the BMB line
must be taken on particular trajectories in the (d,N)

plane: d =3 — a/N and not at fixed dimension d= 3.

. Our study also reveals that the known BMB line is only
halt of the true line of fixed points, the second half
being made of singular fixed points.

. The potentials of these singular fixed points show a
cusp for a finite value of the field and their finite N
counterparts a boundary layer.



Results on the BMB line
at d=8/3 and N = oo



Simple paradox on the
tetracritical FP T,

WF+G  WF+G WF+G
+BMB +BMB G
i i . WP4G
N = o0 ot WEHG | WE4G | WFG | G |

. WE+3 E 5
o 4T3+ ¢ WE+T,+G @ WF+G @ G
Finite NV ; Can ' '

>
3 4 d

LW 0o -

. 8 8
. What occurs if we follow Tz from (d = 3 N=1) to(d= 3 ,N = 00)

continuously as a function of (d,N)?




T3 Ind=2.0 for small N

U(¢)
0.39; /
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T3 has three extrema in ¢ > 0.

The three extrema approach for larger N



T3 INn d=2.6

1 %(d)) 0.384ﬁz(¢)
' N = o, WF
1.0 0.38464
0.38462
0.8 N =4500
0.7 038460 75 él 1.80 ?ﬁ 1.85 3{21.90 ¢
0.6 N=1500
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0.4 , _
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The potential becomes very flat,
since three extrema become very close.

Numerically T3 continues to exist up to N=w.
Why is the Large-N limit not captured by conventional Large-N analysis??



Global plot of the second
derivative of the potential
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It converges to that of WF FP except at i =,

The difference between 7, and WF can be seen not in their potential

but in their derivatives



Eigenperturbations
around T,
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The two eigenperturbations become singular.
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Scaling behavior inside the
boundary layer

. For very large N, the distances between the three
extrema are proportional to N~1/2.

. U"(¢) at the three extrema approach constant values.
---The third and higher order derivatives become

singular.
. We can expect a scaling U” (¢) ~ f (N1/2 (¢ — éo)).

- We can |dent|fy the position of the boundary layer as
¢0 ~ \/2/(d - 2), from numerical solutions and boundary

layer analy3|s




Boundary layer analysis

. To simplify the notation we employ Wilson-Polchinski version of
LPA FP eq.

= - _ _ 4 _
0=1-dV+(d=2)V'+4iV? =2V = =i V"

. Around ji = NY2(ji — ji,)
we introduce a scaled variable ji = N"2(i — ji),

and the potential is scaled as Vy(4) = N (VIN~"*j + i) — 1/d).

The O(e) contribution of FP eq. vanishes if we set jip =2/(d-2),
and the O(e?) contribution is

8V | 8V (@)

+(d—2)aVi (g) —dV (7)) =0
S 5 W@ 2aV(R) = dVe ()



Scaled boundary layer for
finite but very large N
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BMB line
IN d=8/3 and at N = o

VAl
0.15°
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N\ 43 f
. C +2V’ Y 0.05
He 7 (1-2V) \ 1 -2V |

-0.05 — C=0

3 4x ! 2 —XxZ 13 ;
fx) = + dz -0.10,
2 0 i

-0.15. C = oo = Gaussian

c=0-> WF
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Here taking derivatives (at i = 3) and

the limit ¢ - 0 do not commute, which explains
the difference of the stability between 7; and WF



Finite-N analysis around
d=38/3,N= o0

. When we follow T, on the hyperbola eN = a=const,

T, converges to a FP on the BMB line a = 162/C°.

0.05-
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N=8000 a=1600/3
N=24000 x=1600/3

~010 )




Summary

. We followed tetracritical FP T3 in O(N) models increasing
N with LPA.

. It seems that T3 continues to exist up to N=ew. The third
and higher order derivatives become singular at

P = po .

. The potential converges to that of WF FP except at
P = Po.

. Can we conjecture that a similar scenario holds for Tn with
odd n?




O(N) x O(2) model

. Order parameter in the ground state::- a N X 2 matrix ® = (cbl, (/52)

that satisfies @; - ij — 5@'3’

Ginzburg-Landau-Wilson Hamiltonian is given as
1 _
H = / d'x (5 (06,)° + (962)°| +U (. %))

with U (@1, ¢3) which takes a minimum when @, - ¢, = const X 0;;

. | B ~ A\ ~m
Uy (¢1,¢2)= Y ———lnm (P R)"F

n!m!

O(N) x O(2) invariants-- P = 1T (‘2P) ,
7= Tr ("¢ — p/2)



N
d=2 d=3 d~ 3.37 d=4
« | | |
C_|_,M2 C,,C_ C,,C_
Mo, M3
F = N 1K~
~ —k—20 g—
C+ FP
(usual scaling)
= N 1K,
N/

ar _ N_k_ZH_lAk,l

FeNTE T M2M3FP :




160

120+

80 |-

40 L

0

2 22242628 3 32343638 4
d

FIG. 4. O(N)®O(2) model. In the gray region, starting in
d =4 at N = 21.8, no FP at all is found. Above this region
and for d close to 4, both the critical C+ and the tricritical
C_ FPs are found. The line on the right joining the squares
indicates the region where two nonperturbative FPs, M> and
M3, appear. On the line joining the crosses, C_ and M3
collapse. In each region, we indicate the FPs that are present.



