The nonperturbative behavior of the tricritical and tetracritical fixed points of the *O*(*N*) models at large *N*

> Advanced Science Research Center, JAEA, The Racah Institute of Physics^B, LPTMC, Sorbonne Université^C <u>Shunsuke Yabunaka^A, Claude Fleming^B, Bertrand Delamotte^C</u>

> > Phys. Rev. D 102, 065008 (2020). Phys. Rev. Lett. 130, 261602 (2023)

O(N) models

- They have played an important role in our understanding of second order phase transitions.
- N-component vector order parameter
 N=1...Ising, N=2...XY, N=3...Heisenberg Model
- Critical physics (controled by WF FP) has been well understood with various theoretical approaches...Exact solution (2d Ising), Renormalization group (d=4-ε, 2+ε expansion), Large-N analysis, conformal bootstrap

We study multicrical fixed points at Large-N and show that nonperturbative effects are important.

Common wisdom on the criticality of O(N) models (finite N case)

GLW Hamiltonian

$$H[\phi] = \frac{1}{2} \int_{x} (\nabla \phi_i)^2 + U(\phi) \qquad \phi_i$$

N-component

 $U(\phi) = a_2 \phi_i^2 + a_4 (\phi_i^2)^2 + a_6 (\phi_i^2)^3 + \dots$ N-component order parameter

Below the critical dimension $d_n = 2 + 2/n$, the $(\phi_i^2)^{n+1}$ term becomes relevant around the Gaussian FP (G).

Finite
$$N$$
 $2 \quad 5 \quad 8 \\ \hline 2 \quad 5 \quad 8 \\ \hline 2 \quad 3 \quad 4 \quad d$

A nontrivial fixed point T_n with n relevant (unstable) directions branches from G at d_n . (Wilson-Fisher FP, which describes second order phase transition, at d=4 and the tricritical FP T_2 at d=3....)

Bardeen-Moshe-Bander (BMB) Phenomena at d = 3 and $N = \infty$

Bardeen-Moshe-Bander found an intriguing phenomenon in O(N) models with $\tau(\varphi^2)^3$ interaction.

(i) at d = 3 and $N = \infty$, there exists a finite line of fixed points that starts at the Gaussian FP ($\tau = 0$) and ends at a special FP called the BMB FP

(ii) the FPs for $\tau \neq 0$ are interacting FP (2-unstable and 1-magrinal) but the critical exponents are all identical to the Gaussian ones.

Bardeen-Moshe-Bander (BMB) Phenomenon at d = 3 and $N = \infty$

(iii) The FPs are UV stable on the critical surface

(iv) The FP potential of BMB FP has singularity at small fields, suggesting spontaneous symmetry breaking of scale invariance

Flow of τ

- The flow of $\tilde{\tau} = N^2 \tau$ in perturbation theory at Large N becomes $N\beta_{\tilde{\tau}} = -2\alpha \tilde{\lambda} + 12\tilde{\lambda}^2 - \pi^2 \tilde{\lambda}^3/2 + O(1/N)$ where $\alpha = (3 - d)N$
- . Two roots of $\beta_{\tilde{\tau}}=0$: $\tilde{\tau}_{\pm}=4/\pi^2(3\pm\sqrt{9-\pi^2\alpha/4})$
 - $\tilde{\tau}_{-}$ (corresponding to the perturbative tricritical FP) exists between $3 - \alpha_c/N < d < 3$ with $\alpha_c = 36/\pi^2 \simeq 3.65$.
 - $\tilde{\tau}_+$ exists for $3 \alpha_c/N < d$.

(Note that perturbation theory might be not very precise for $\tilde{\tau}_+$)

. Hereafter we call the FP corresponding $\tilde{ au}_-$ ($\tilde{ au}_+$) as A_2 (\tilde{A}_3)

The number of relevant directions around a FP is indicated with the subscript.

• How can we understand the line of FPs and its end point at $N = \infty$ using Large-N limit of finite N FPs (A_2 , \tilde{A}_3)?

Fixed point structure at general values of (*d*,*N*)

Phys.Rev.E 106 (2022) 5, 054105

 Understanding BMB phenomena is essential for understanding fixed point structure of O(N) models at general values of (d, N).

Bardeen-Moshe-Bander (BMB) line at d = 8/3 and $N = \infty$

It is shown with FRG that (J. Comellas and A. Travesset, Nucl. Phys. B 1997),

(i) at d = 8/3 and $N = \infty$, there exists a finite line of tetracritical fixed points (3 unstable+1 marginal) that starts at the Gaussian FP ($\lambda = 0$) and ends at the WF FP. (Question: How can the stabilities of the FPs be different?)

(ii) the FPs (\neq WF) for $\lambda \neq 0$ are interacting FP but the critical exponents are all identical to the Gaussian ones.

Flow of λ

. Calling $\lambda/(384N^3)$ the coupling in front of $\lambda(\varphi^2)^4$ term, the large-N flow equation for λ becomes

$$\partial_t \lambda = -3\epsilon\lambda + \frac{9\lambda^2}{4N} + O(N^{-2})$$
 with $\epsilon = 8/3 - d$

• The nontrivial tetracritical FP solution is $\lambda^* = 4\epsilon N/3$ and does not indicate disappearance of FP in the limit $N \to \infty$ at fixed ϵ . (However, in this limit, the FP is no longer controlled perturbatively.)

Non perturbative

renormalization group (NPRG)

Modern implementation of Wilson's RG that takes the fluctuation into account step by step in lowering the cut-off wavenumber k, in terms of wavenumber-dependent effective action Γ_k

$$k = 0 \qquad \qquad k = \Lambda - \delta \Lambda \quad k = \Lambda$$

 c_2 $\Gamma_{k=0} = \Gamma$ $r_{k=0} = \Gamma$ c_1 $r_{k=0} = \Gamma$ $r_{k=0} = \Gamma$ $r_{k=$

taken into account.

NPRG equation

NPRG equation (Wetterich, Phys. Lett. B, 1993) is

$$\partial_t \Gamma_k[\boldsymbol{\phi}] = \frac{1}{2} \operatorname{Tr}[\partial_t R_k(q^2) (\Gamma_k^{(2)}[q, -q; \boldsymbol{\phi}] + R_k(q))^{-1}]$$
$$t = \ln(k/\Lambda)$$

Derivative expansion(DE2)

 It is impossible to solve the NPRG equation exactly and we have recourse to approximations,

$$\Gamma_{k}[\phi] = \int_{x} \left(\frac{1}{2} Z_{k}(\rho) (\nabla \phi_{i})^{2} + \frac{1}{4} Y_{k}(\rho) (\phi_{i} \nabla \phi_{i})^{2} + U_{k}(\rho) + O(\nabla^{4}) \right).$$

$$\rho = \phi_{i} \phi_{i} / 2$$

• Simpler approximations…LPA($\eta = 0$), LPA' approximation

Applications of DE

PHYSICAL REVIEW E 90, 062105 (2014)

Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition

P. Jakubczyk,¹ N. Dupuis,² and B. Delamotte² ¹Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland ²Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France (Received 10 September 2014; published 1 December 2014)

We reexamine the two-dimensional linear O(2) model (φ^4 theory) in the framework of the nonperturbative renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared regulator, we find a transition between a high-temperature (disordered) phase and a low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the transition. In particular, we find the anomalous dimension $\eta(T_{\rm KT}) \simeq 0.24$ and the stiffness jump $\rho_s(T_{\rm KT}) \simeq 0.64$ at the transition temperature $T_{\rm KT}$, in very good agreement with the exact results $\eta(T_{\rm KT}) = 1/4$ and $\rho_s(T_{\rm KT}) = 2/\pi$, as well as an essential singularity of the correlation length in the high-temperature parameter base as $T \rightarrow T_{\rm KT}$.

$$\Delta\Gamma_k[\boldsymbol{\phi}] = \frac{1}{2}\rho_{s,k}\int d^d r \, (\boldsymbol{\nabla}\theta)^2$$

Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group

Gonzalo De Polsi ⁰,^{1,*} Ivan Balog,² Matthieu Tissier ⁰,³ and Nicolás Wschebor⁴ ¹Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay ²Institute of Physics, Bijenička cesta 46, HR-10001 Zagreb, Croatia ³Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France ⁴Instituto de Física, Facultad de Ingeniería, Universidad de la República, J.H.y Reissig 565, 11000 Montevideo, Uruguay

(Received 23 January 2020; accepted 26 February 2020; published 14 April 2020)

We compute the critical exponents v, η and ω of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted $O(\partial^4)$]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between $\frac{1}{9}$ and $\frac{1}{4}$, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case, where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat exponent α , our results are compatible with those of Monte Carlo but clearly exclude experimental values.

	ν	η	ω
LPA	0.7090	0	0.672
$O(\partial^2)$	0.6725(52)	0.0410(59)	0.798(34)
$O(\partial^4)$	0.6716(6)	0.0380(13)	0.791(8)
CB (2016)	0.6719(12)	0.0385(7)	0.811(19)
CB (2019)	0.6718(1)	0.03818(4)	0.794(8)
Six-loop, $d = 3$	0.6703(15)	0.0354(25)	0.789(11)
ϵ expansion, ϵ^5	0.6680(35)	0.0380(50)	0.802(18)
ϵ expansion, ϵ^6	0.6690(10)	0.0380(6)	0.804(3)
MC+High T (2006)	0.6717(1)	0.0381(2)	0.785(20)
MC (2019)	0.67169(7)	0.03810(8)	0.789(4)
Helium-4 (2003)	0.6709(1)		
Helium-4 (1984)	0.6717(4)		
XY-AF (CsMnF ₃)	0.6710(7)		
XY-AF (SmMnO ₃)	0.6710(3)		
XY-F (Gd ₂ IFe ₂)	0.671(24)	0.034(47)	
XY-F (Gd ₂ ICo ₂)	0.668(24)	0.032(47)	

Nondimensionalized NPRG eq.

 Scaling solutions can be found as FPs solution of nondimensionalized NPRG eq.

$$\tilde{\phi} = \sqrt{Z_k} k^{\frac{2-d}{2}} \phi \qquad \tilde{\rho} = Z_k k^{2-d} \rho \qquad \tilde{U}_t(\tilde{\rho}) = k^{-d} U_k(\rho)$$

0

Litim cutoff

$$y = \frac{q^2}{k^2} \qquad R_k(q^2) = Z_k k^2 y r(y) \qquad r(y) = (1/y - 1)\theta(1 - y)$$

Under LPA,

$$\partial_t \tilde{U}_t(\tilde{\phi}) = -d\,\tilde{U}_t(\tilde{\phi}) + \frac{1}{2}(d-2)\tilde{\phi}\,\tilde{U}_t'(\tilde{\phi}) + (N-1)\,\frac{\tilde{\phi}}{\tilde{\phi} + \tilde{U}_t'(\tilde{\phi})} + \frac{1}{1+\tilde{U}_t''(\tilde{\phi})}$$

Usual large N limit of the LPA flow

Rescaled finite N equation $\tilde{U}_t = N \bar{U}_t$ $\tilde{\phi} = \sqrt{N} \bar{\phi}$

$$\partial_t \bar{U}_t(\bar{\phi}) = -d\,\bar{U}_t(\bar{\phi}) + \frac{1}{2}(d-2)\bar{\phi}\,\bar{U}_t'(\bar{\phi}) + \left(1 - \frac{1}{N}\right)\frac{\bar{\phi}}{\bar{\phi} + \bar{U}_t'(\bar{\phi})} + \frac{1}{N}\frac{1}{1 + \bar{U}_t''(\bar{\phi})}$$

- The terms proportional to 1/N are assumed to be subleading.
- At N=∞, the resulting NPRG eq without an explicit 1/N dependence was believed to be exact and can be solved exactly.

Wilson-Polchinski version of NPRG

Transformation of the variables

$$\begin{array}{ll} V(\mu) = U(\phi) + (\phi - \Phi)^2/2 \\ (U, \phi) \longleftrightarrow (V, \Phi) & \phi - \Phi = -2\Phi V'(\mu) \\ \end{array} \qquad \mu = \Phi^2 \\ \mbox{Rescaling in N} & \bar{\mu} = \mu/N, \ \bar{V} = V/N \end{array}$$

g in N
$$ar{\mu}=\mu/N,\ ar{V}=V/N$$

LPA FP eq.
$$0 = 1 - d \, ar{V} + (d-2) ar{\mu} ar{V}' + 4 ar{\mu} ar{V}'^2 - 2 ar{V}' - rac{4}{N} ar{\mu} ar{V}''.$$

$$1/N$$
 A small parameter $ar{V}''$ The highest order derivative

We have to deal with singular perturbation in general.

Usual large-N limit in the Wilson-Polchinski parametrization

$$0 = 1 - d\bar{V} + (d-2)\bar{\varrho}\bar{V}' + 2\bar{\varrho}\bar{V}'^2 - \bar{V}' - \frac{2}{N}\bar{\varrho}\bar{V}''$$

- In generic dimensions 2 < d < 4, it has three solutions: Gaussian FP (G), Wilson Fisher FP (WF) and linear FP $\bar{V}(\bar{\varrho}) = \bar{\varrho}$ (discontinuity FP).
- In dimensions d = 2 + 2/p with odd integer p > 0, $(\varphi^2)^{p+1}$ term is marginal around G and a line of FPs starting from G and terminating at BMB FP appears.

Results on the BMB line at d = 3 and $N = \infty$

Tricritical FP solutions in d = 3and at $N = \infty$ in LPA

- $\tau \in [0, \tau_{\rm BMB} = 32/(3\pi)^2]$ \cdots FPs on the BMB line
- $\tau > \tau_{BMB}$... No FP defined for all ϱ

•
$$\sqrt{2/ au} = 0$$
 ···Wilson-Fisher (WF) FP

Nonanalicity of BMB FP

- $d^2 \bar{V}/d\bar{\rho}^2$ becomes discontinuous at $\bar{\varrho} = \bar{\varrho}_0$.
- In Wetterich parametrization, the nonanalicity corresponds to a cusp-like behavior $\bar{U}(\bar{\phi}) \sim \text{const} |\phi|$

Finite-N realization of the regular BMB line

- . Let us consider to follow A_2 or \tilde{A}_3 on a path toward ($d = 3, N = \infty$) : $d = 3 - \alpha/N, N \to \infty$
- It approaches a FP on the BMB line and τ is given by

$$\alpha - 36\tau + 96\tau^2 = 0$$

• Derivation: We expand the potential as

$$\bar{V}_{\alpha,N}(\bar{\varrho}) = \bar{V}_{\alpha,N=\infty}(\bar{\varrho}) + \bar{V}_{1,\alpha}(\bar{\varrho})/N + O(1/N^2).$$

and impose analyticity of $\bar{V}_{1,\alpha}(\bar{\varrho})$ around $\bar{\varrho}=1$

Plot of τ as a function of α

Under the double limit $d = 3 - \alpha/N, N \to \infty$

• What occurs for \tilde{A}_3 at $\tau = \tau_{BMB}$ and finite but large N?

Singular FPs constructed from the FPs on the BMB line

FIG. 2. $N = \infty$ and d = 3: Singular potential of $S\mathcal{A}(\tau = 0.33)$ from the potential of $\mathcal{A}(\tau = 0.33)$ given by the red and dashed red curves, Eq. (7). The green and dashed green curves show $\bar{V}(\bar{\varrho}) = \bar{\varrho}$. The potential of $S\mathcal{A}(\tau = 0.33)$ is made of the plain green and red curves that meet at $\bar{\varrho}_0(\tau = 0.33)$. Inset: zoom of the region around the cusp and its rounding at finite N within the boundary layer.

SG₃ already found at

SG₃ (with 3 relevant directions)

in 3 < d < 4

 SG_3 in d=3.2

PRL 121, 231601 (2018)

Fixed point structure in the vicinity of $d = 3, N = \infty$

• The number of relevant directions around a FP at finite but large N is indicated with the subscript.

Summary

- The large N limit that allows us to find the BMB line must be taken on particular trajectories in the (d, N) plane: d = 3 α/N and not at fixed dimension d= 3.
- Our study also reveals that the known BMB line is only half of the true line of fixed points, the second half being made of singular fixed points.
- The potentials of these singular fixed points show a cusp for a finite value of the field and their finite N counterparts a boundary layer.

Results on the BMB line at d = 8/3 and $N = \infty$

• What occurs if we follow T₃ from $(d = \frac{8}{3}, N = 1)$ to $(d = \frac{8}{3}, N = \infty)$ continuously as a function of (d,N)?

T₃ in d=2.6 for small N

T₃ has three extrema in $\overline{\phi} > 0$. The three extrema approach for larger N

T₃ in d=2.6

Numerically T₃ continues to exist up to N=∞. Why is the Large-N limit not captured by conventional Large-N analysis??

Global plot of the second derivative of the potential

The difference between T_3 and WF can be seen not in their potential but in their derivatives

Eigenperturbations around T₃

The two eigenperturbations become singular.

The corresponding eigenvalue

tends to $\nu^{-1} = d - 2$

Scaling behavior inside the boundary layer

- For very large N, the distances between the three extrema are proportional to $N^{-1/2}$.
- $\bar{U}''(\bar{\phi})$ at the three extrema approach constant values. ...The third and higher order derivatives become singular.
- We can expect a scaling $\bar{U}''(\bar{\phi}) \simeq f\left(N^{1/2}(\bar{\phi} \bar{\phi}_0)\right)$.

• We can identify the position of the boundary layer as $\bar{\phi}_0 \simeq \sqrt{2/(d-2)}$, from numerical solutions and boundary layer analysis

Boundary layer analysis

 To simplify the notation we employ Wilson-Polchinski version of LPA FP eq.

$$0 = 1 - d\bar{V} + (d - 2)\bar{\mu}\bar{V}' + 4\bar{\mu}\bar{V}'^2 - 2\bar{V}' - \frac{4}{N}\bar{\mu}\bar{V}''$$

. Around $\tilde{\mu} = N^{1/2}(\bar{\mu} - \bar{\mu}_0)$

we introduce a scaled variable $\tilde{\mu} = N^{1/2}(\bar{\mu} - \bar{\mu}_0)$, and the potential is scaled as $\tilde{V}_N(\tilde{\mu}) = N(\bar{V}(N^{-1/2}\tilde{\mu} + \bar{\mu}_0) - 1/d)$.

• The $O(\epsilon)$ contribution of FP eq. vanishes if we set $\bar{\mu}_0 = 2/(d-2)$, and the $O(\epsilon^2)$ contribution is

$$-\frac{8\tilde{V}_{\infty}''(\tilde{\mu})}{d-2} + \frac{8\tilde{V}_{\infty}'(\tilde{\mu})^2}{d-2} + (d-2)\tilde{\mu}\tilde{V}_{\infty}'(\tilde{\mu}) - d\tilde{V}_{\infty}(\tilde{\mu}) = 0$$

Scaled boundary layer for finite but very large N

BMB line in d = 8/3 and at $N = \infty$

Here taking derivatives (at $\bar{\mu} = 3$) and the limit $C \rightarrow 0$ do not commute, which explains the difference of the stability between T_3 and WF

Finite-N analysis around $d = 8/3, N = \infty$

• When we follow T_3 on the hyperbola $\epsilon N = \alpha = \text{const}$,

 T_3 converges to a FP on the BMB line $\alpha = 162/C^3$.

Summary

- We followed tetracritical FP T₃ in O(N) models increasing N with LPA.
- It seems that T₃ continues to exist up to N=∞. The third and higher order derivatives become singular at $\bar{\rho}=\bar{\rho}_0$.
- The potential converges to that of WF FP except at $\bar{\rho}=\bar{\rho}_0.$
- Can we conjecture that a similar scenario holds for T_n with odd n?

$O(N) \times O(2)$ model

 \cdot Order parameter in the ground state… a $\,N imes 2\,$ matrix $\,\Phi=(\pmb{\phi}_1,\pmb{\phi}_2)$

that satisfies $\ \phi_i \cdot \phi_j = \delta_{ij}$

Ginzburg-Landau-Wilson Hamiltonian is given as

$$H = \int d^{d}\mathbf{x} \left(\frac{1}{2} \left[\left(\partial \boldsymbol{\phi}_{1} \right)^{2} + \left(\partial \boldsymbol{\phi}_{2} \right)^{2} \right] + U \left(\boldsymbol{\phi}_{1}, \boldsymbol{\phi}_{2} \right) \right)$$

with $U\left(\pmb{\phi}_1, \pmb{\phi}_2
ight)$ which takes a minimum when $\ \ \pmb{\phi}_i \cdot \pmb{\phi}_j = const imes \delta_{ij}$

$$\tilde{U}_k\left(\tilde{\psi}_1,\tilde{\psi}_2\right) = \sum_{n,m=0} \frac{1}{n!m!}\tilde{a}_{n,m}\left(\tilde{\rho}-\tilde{\kappa}\right)^n\tilde{\tau}^m$$

$$\begin{split} O(N) \times O(2) & \text{invariants} \cdots \quad \rho = & \operatorname{Tr} \left({}^t \Phi \Phi \right) \\ \tau &= & \frac{1}{2} \operatorname{Tr} \left({}^t \Phi \Phi - \rho/2 \right)^2 \end{split}$$

$$\begin{array}{c} & O(2) \text{ model} \\ & & & \\ &$$

FIG. 4. $O(N) \otimes O(2)$ model. In the gray region, starting in d = 4 at N = 21.8, no FP at all is found. Above this region and for d close to 4, both the critical C_+ and the tricritical C_- FPs are found. The line on the right joining the squares indicates the region where two nonperturbative FPs, M_2 and M_3 , appear. On the line joining the crosses, C_- and M_3 collapse. In each region, we indicate the FPs that are present.