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• A comprehensive tool to describe the statistical properties of a system
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Functional differential equation (FDE)

FDE is exact, but…
there is no universal, accurate, and 

efficient solution method!

• Functional renormalization group (FRG)

• Hopf eq.

∂kΓk[φ] = 1
2 Tr ∂kRk ( δ2Γk

δφδφ
[φ] + Rk)

−1
Wetterich eq.: exact formulation of RG of the effective action

: RG scale

: Regulator

k
Rk

• Density functional theory, Schwinger-Dyson, Fokker-Planck, …
An exact formulation of the time evolution of the statistical properties of turbulence

Various examples in physics

• Partial differential equation (PDE) involving functional & functional diff.

Hopf, J. Rat. Mech. Anal. (1952)

Wetterich, PLB (1993)



∂kΓk[φ] = 1
2 Tr ∂kRk ( δ2Γk

δφδφ
[φ] + Rk)

−1

E.g.1) Derivative expansion

Functional Taylor expansion around φ(x) = φtarget(x)

Γk[φ] ≈ ∫ dx (Uk(φ(x)) + 1
2 Zk(φ(x))(∂μφ(x))

2
+ ⋯)

❌ Usually, improving the order of the truncation is not easy.

❌ The solution is applicable to limited configurations of φ(x)

Other solution methods?

To facilitate numerical analysis, 
approximation of FDE is needed.
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• Derivative expansion:  

• Vertex expansion:        

φ(x) ≈ const .
φ(x) ≈ φtarget(x)

Taylor-expansion-based method and its limitations

Common approach: Taylor series expansion & truncation

E.g.2) Vertex expansion

• Many coordinate (momentum) integrals

• Prior knowledge of the ground state is required.

• Treatment of complex field configurations, such 

as inhomogeneous states, is tough.
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Method 1) Introduction of finite spatial lattice
, , ,  (internal DOF)φ = {φn,α}n,α n = (n1, …, nd) 0 ≤ ni < L α = 1,…, NIDOF

 ( : orthonormal basis function)φ(x, α) ≈
NDOF

∑
i=1

φibi(x, α) = φ ⋅ b(x, α) bi(x, α)

FDE: Infinite-dimensional partial differential equation (PDE)

∂kΓk[φ] = 1
2 Tr ∂kRk ( δ2Γk

δφδφ
[φ] + Rk)

−1

∂kΓk(φ) = 1
2 tr ∂kRk ( ∂2Γk

∂φ∂φ
(φ) + Rk)

−1
-dim. PDE(NDOF + 1)

Another attempt: FDE as high-dim. PDE

To realize numerical analysis, the input dimensions should be truncated.

Method 2) Basis function expansion

The original continuum theory is obtained for increasing .NDOF

Total DOF of : φ NDOF = LdNIDOF

See, e.g., Venturi, PR (2018),  
Venturi, Dektor, Res. Math. Sci (2021)



Failure of computational grids
How can we solve -dim. PDE with large (NDOF + 1) NDOF

Taking computational grids for  is infeasible.φ
# of grid points  exp( )∼ NDOF if grids are assigned for each φn,α

Grid-based methods (finite-element method, Runge-Kutta, …) can not be used.

Grid-free method for high-dim. PDE is required

Some people attempt to use tensor decomposition to mitigate 
computational complexity of representing the solution for linear 
FDE, such as Hopf eq.

c.f.) 

But only the results with  has been reported…NDOF ≲ 6
Venturi, PR (2018), Venturi, Dektor, Res. Math. Sci (2021)
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Purpose of this talk

Machine learning allows us to calculation with large !NDOF
My idea:

• Grid-free method for solving PDE

• The solution is obtained simultaneously for a domain of the 
configuration space of  rather than one configuration.φ

Advantageous for applications to inhomogeneous systems
Solitons in scalar models, electrons in materials, …

In this talk, I will share the idea and 
show a numerical demonstration.
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Machine learning for partial differential equations (PDE)
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Psichogios, Ungar, AIChE (1992) 
Lagaris, Likas, Fotiadis, IEEE Transactions on Neural Networks (1998) 
Raissi, Perdikaris, Karniadakis (2017) 
Raissi, Perdikaris, Karniadakis, Journal of Computational Physics (2019),…

• Physics-informed neural network (PINN)

• Backward stochastic differential equation

• Rayleigh-Ritz variational method

Recently, there have been many applications of machine learning to PDEs

E, Han, Jentzen, Comm. Math. Stat. (2017) 
Han, Jetzen, E (2018) 
Rassi (2018) 
Beck, E, Jentzen, J. Nonlinear Science (2019),…

E, Yu, Comm. Math. Stat. (2018) 
Khoo, Lu, Ying, Res. Math. Sci. (2018),…

…

Applicable to various 
types of PDEs



Physics-informed neural network (PINN)
I.E. Lagaris, A. Likas, D. I. Fotiadis, IEEE Transactions on Neural Networks (1998)  

M. Raissi, P. Perdikaris, G. E. Karniadakis (2017) 
M. Raissi, P. Perdikaris, G.E. Karniadakis, Journal of Computational Physics (2019)

The solution is represented by an NN and optimized to satisfy PDE and BC 
with backpropagation.

PDE: 
Boundary condition:

 IDE( f(x), ∂μ f(x), ⋯) = 0
IBC( f(x), ∂μ f(x), ⋯) = 0

 (Domain)
x ∈ Ω
x ∈ ∂Ω

f(x) ≈ fNN(x; θ)

Learning parameter θ
ac

tiv
at

io
nx1

x2

xN

… … …

…
…

…

… fNN(x; θ)… …

ac
tiv

at
io

n

Loss function (taking the minimum when PDE & BC are satisfied)
例: L(θ) = average

x∈Ω
∥IDE( fNN(x; θ), ∂μ fNN(x; θ), ⋯)∥2 + average

x∈∂Ω
∥IBC( fNN(x; θ), ∂μ fNN(x; θ), ⋯)∥2
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PINN’s capability of handling high-dim. PDEs
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Advantage of PINN: Grid free Applicable to high-dim. PDEs

• L. Guo, H. Wu, X. Yu, T. Zhou, Computer Methods in Applied Mechanics and Engineering (2022) 
• D. He, S. Li, W. Shi, X. Gao, J. Zhang, J. Bian, L. Wang, T.-Y. Liu, In International Conference on Artificial 

Intelligence and Statistics (2023)  
• J. Cen, X. Chen, M. Xu, Q. Zou, arXiv:2305.06863. 
• K. Tang, X. Wan, C. Yang, Journal of Computational Physics, 476 (2023)  
• Z. Hu, K.Shukla, G. E. Karniadakis, K. Kawaguchi, arXiv:2307.12306 
• Z. Hu, Z. Yang, Y. Wang, G. E. Karniadakis, K. Kawaguchi, arXiv:2311.15283 
• Z. Hu, Z. Shi, G. E. Karniadakis, K. Kawaguchi, arXiv:2312.14499

Applications to high-dim. PDEs

-dim. PDE105

Hamilton-Jacobi-Bellman eq.

Black-Scholes-Barenblatt eq.

Moreover, the solution is obtained 
simultaneously for a domain of the 
inputs rather than one input.
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Lθ = 𝔼
φ ∼ 𝒫φ

k ∼ 𝒫k

∂kΓθ
k(φ) − 1

2 tr ∂kRk ( ∂2Γθ
k(φ)

∂φ∂φ
+ Rk)

−1
2

1) NN for Γk(φ)

2) Training of Wetterich equation

Γθ
k(φ) = S(φ) + ΔSfree(k) + γθ(k, φ)

• The expectation is evaluated on a finite number of collocation points .

•  is some probability distribution.

(k, φ)
𝒫φ,k

PINN allows us to solve the Wetterich equation with large !NDOF

PINN for Wetterich equation

Procedures proposed in TY, arXiv:2312.16038

Most nontrivial part of  is the interaction-induced RG part.Γk(ϕ)

Constant shift 
from free part

Interaction-induced 
RG part

• We replace this with an NN
• Init. cond. γ(kUV, φ) = 0
A conceivable choice:

γθ(k, φ) ≈ NNθ(k, φ) − NNθ(kUV, φ)
 is not necessary.LBC
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0-dim.  modelO(N)
S(φ) = 1

2 m2φ2 + g
4! (φ2)2

• Exact results and results by perturbative, large-  expansions are 
available.

N

• NDOF = N

The Wetterich equation is an -dim. PDE.(N + 1)
We can investigate the scalability with  by increasing .NDOF N

* We do not reduce Wetterich eq. to 2-dim. PDE with  and k ρ = φ2/2

• The perturbative region is given by g̃ = Ng/m4 ≪ 1
E.g., Keitel, Bartosch, JPA (2012)

• We calculate  and self-energy .γ(k, φ) σ = ∂2
φγ(k, φ)

• Regulator: ,  Rαα′ 

k = k2
UVe−2l l = ln(kUV/k)

• Mass squared:  (  to validate the UV saddle-point cond.)m2/k2
UV = 0.01 ≪ 1
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Neural network for effective action

RG scale l

γ(l, φ)⊖

l = 0 NNθ

 
inputs
N + 1

 
inputs
N + 1

3 hidden layers

256 units/layer


Softplus activation

Field φ

NNθ… …
…

…

…

… …

…

…

…

γθ(l, φ) ≈ NNθ(l, φ) − NNθ(0,φ) l = ln(kUV/k)

• 3 hidden layers

• 256 units/layer

• Differentiable softplus activation
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γθ(0,φ) = 0



Pretraining
Lθ = 𝔼

φ ∼ 𝒫φ

l ∼ 𝒫l

∂lΓθ
l (φ) − 1

2 tr ∂lRl ( ∂2Γθ
l (φ)

∂φ∂φ
+ Rl)

−1
2

The matrix must be regular during the training.

In our experience, this is frequently broken with randomly chosen .θ

Pretraining with some approximate analytic 
results remedies this problem

We use 1st-order perturbative result:

Lpre
θ = 𝔼

φ ∼ 𝒫φ

l ∼ 𝒫l

[(γ(l, φ; θ) − γ1pt(l, φ))2]
17



Other details of numerical procedure

• : uniform distribution in  with 𝒫l [0,lend] lend = 5
• :𝒫φ  is sampled following  (w/o sign)


 is uniformly sampled
∥φ∥ N(0,N/m2)
n̂ = φ/∥φ∥

* Other choices such as  fail to sample the neighborhoods of 
 due to curse of dimensionality

N(0, m−21)
φ = 0

• 500 collocation points are used to evaluate the expectation.
• Adam optimizer

• Pytorch

• The matrix inverse is evaluated by direct method

Lθ = 𝔼
φ ∼ 𝒫φ

l ∼ 𝒫l

∂lΓθ
l (φ) − 1

2 tr ∂lRl ( ∂2Γθ
l (φ)

∂φ∂φ
+ Rl)

−1
2

• This may not be efficient but is easy to implement (torch.linalg.inv)

• More efficient way: Hutchinson trace estimator (future work) Hutchinson, Simul. Comp. (1990)
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Computational time & convergence
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Comp. time on NVIDIA A100 GPU

• Learning rate (Wetterich):  with exponential decay factor 0.99999

• Learning rate (pretraining): 

10−4

10−3

We conduct computations for all the combinations of 
 and N = 1,10,100 g̃ = 0.1,1,10

Learning curve & histories of physical quantities 
(  &  case)N = 100 g̃ = 1
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 and  caseN = 1 g̃ = 1
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RG scale  dependence at l φ = 0  dependence at φ l = lend

• PINN-LFRG shows accurate results compared to 1st-order 
perturbation & leading-order large-N expansion

•  is simultaneously obtained for a domain of  in our method 
(PINN-LFRG).
γ(l, φ) φ

(our method)
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 and  caseN = 100 g̃ = 1
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• PINN-LFRG shows comparable results with large-N expansion, 
which should be accurate for .N = 100

• Except for , PINN-LFRG results are given by  lines 
corresponding to the -direction in  space.

γ(l, 0) N = 100
N φ

RG scale  dependence at l φ = 0  dependence at φ l = lend

Reduced self-energy σα(l, φ) = ∂2

∂φ2α
γ(l, φ)

•  symmetry is reproduced in PINN-LFRG.O(N)
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Results at  for different  and φ = 0 N g̃
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Relative error compared to exact results (minus indicates underestimation)

γ = γ(lend, 0)

σ = 1
N

N

∑
α=1

σα(lend, 0)

Δσ = 1
N

N

∑
α=1

(σα(lend, 0) − σ)2

• For all  and , the errors of PINN-
LFRG are within 3% for  and 1% for .

g̃ N
γ σ

• Even when  and  are not small, 
PINN-LFRG shows accurate results.

1/N g̃

NNs are promising approximations 
independent of the existence of a 
small parameter.
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Summary
Physics-informed neural network (PINN) provides a novel 
framework for solving the Wetterich equation with large DOF

Ref: TY, Physics-informed neural network for solving functional renormalization group 
on lattice, arXiv:2312.16038

• Addressing high-dim. PDE

• The solution is obtained simultaneously for a domain of the 
configuration space of  rather than one configuration.φ

The demonstration in the 0D O(N) model indicates the 
feasibility of calculations involving a substantial number of 
degrees of freedom, around  or more.102

Advantageous for applications to inhomogeneous systems
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Outlook
• Extension to finite-dimensional boson systems is straightforward.

• Fermion systems?

Application: Inhomogeneous states in scalar models, such as solitons …

There is currently no efficient method for constructing NNs for 
Grassmann variables…
However, one could apply our approach to fermionic systems 
by introducing bosonic auxiliary fields, for example.
An exciting application…Density functional theory (DFT)

Polonyi, Sailer, PRB (2002), Schwenk, Polonyi (2004), Kemler, Braun, JPG (2013), Rentrop, Jakobs, Meden, JPA (2015), Kemler, 
Pospiech, Braun, JPG (2017), Liang, Niu, Hatsuda, PLB (2018), TY, Yoshida, Kunihiro PRC (2019); PTEP (2019), TY, Naito, PRB (2019), 

TY, Kasuya, Yoshida, Kunihiro, PTEP (2020), TY, Naito, PRR (2021), TY, Haruyama, Sugino, PRE (2021), TY, Naito, PRB (2022)

Effective action for density  (two-particle point irreducible FRG)ρ
∂kΓλ[ρ] = 1

2 ∫ dτ∫ dx∫ dx′ U(x − x′ ) ρ(τ, x)ρ(τ, x′ ) + ( δ2Γλ[ρ]
δρδρ )

−1

(τ, x, τ, x′ ) − ρ(τ, x)δ(x − x′ )

Common approach for electrons, nuclei, ..,
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